• Title/Summary/Keyword: Water pump

Search Result 1,494, Processing Time 0.027 seconds

Optimum design and performance of marine sea water pump with impeller using CFRP (CFRP 임펠러를 사용한 선박용 해수펌프의 최적설계와 성능특성)

  • Jeong, Seon Yong;Rhi, Seok Ho;Seo, Hyoung Seock;Lee, Kye Bock
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7878-7884
    • /
    • 2015
  • Marine sea water pump with impeller using carbon fiber block was developed to prevent the impeller corrosion by the salinity. A numerical analysis was carried out in order to optimize the impeller and volute design for marine sea water pump and to investigate the sensitivity of the related parameters(impeller thickness, surface roughness) using CFD commercial code. The impeller thickness is limited because of the weight. Since the impeller using the carbon fiber lights, the thickness which has a maximum efficiency can be used. The results show that the surface roughness leads to an 7% reduction in pump efficiency.

The Performance Analysis of Sea Water Heat Pump applied Low GWP Refrigerants (Low GWP 냉매를 적용한 해수열 히트펌프의 성능해석)

  • Lim, Seung-Taek;Kim, Hyeon-Ju;Lee, Ho-Saeng
    • Journal of Power System Engineering
    • /
    • v.20 no.5
    • /
    • pp.92-97
    • /
    • 2016
  • In this study, the seawater Heat Pump System using seawater with temperature of annual domestic conditions ($0^{\circ}C$ to $25^{\circ}C$) is designed in order to compare its performance against the Heat Pump using unused heat of seawater. As a potential replacement for current refrigerants that exacerbate global warming and ozone delpetion, a Low GWP refrigerant's performance is analyzed. The basic water to water Heat Pump system is chosen and three commercial refrigerants - R134a, R410a, R32 - are used to compare against new Low GWP refrigerant R1234ze. When seawater with temperature of $25^{\circ}C$ is used, the performance change showed maximal increase in COP, 38.3%. low GWP refrigerant R1234ze, showed great performance characteristics reach to 5.242 and Existing commercial refrigerant, R134a showed only less than 0.03 performance difference against R1234ze. The study confirms notable performance of R1234ze refrigerant through simulation as environmentally friendly refrigerant for domestic seawater Heat Pump.

Design and fundamental test on the cargo pump sump scaled model of tankers (탱크선 카고 펌프장 축소모델 설계 및 기초 실험)

  • Lee, Jo-Yeon;Kim, Seung-Jun;Chen, Zhenmu;Singh, Patrick Mark;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.31-35
    • /
    • 2017
  • The internal flow of a pump system that is installed in the interior of large vessels such as tankers is largely affected by the water level and flow conditions of the pump sump. However, the performance of the pump is generally evaluated with the consideration of only the performance of the pump itself, without considering the pumping station operating environment. Therefore, if the pump is affected by the incoming flow that exhibits vortex and swirl, the occurrence of vortex and swirl accompanied with air may cause problems with the pump sump. This effect of flow condition can lead to a decrease in efficiency, increase in vibration, and noise generation in the pump. In this study, to investigate the internal flow of the pump sump according to several water levels, a pump sump scale-model was designed and constructed. The frequency of vortex occurrence and the shape of the vortex were investigated according to the different water levels of a fundamental test. The Class C vortex type, which has a larger volume of air intake to the pump, was confirmed by the higher occurrence frequency at a relatively lower water level.

The Development of Feed-Water Flow Controller of Boiler Feed-Water Pump in 500MW Class Coal-Fired Power Plant (500MW급 석탄화력발전소 보일러 급수펌프 유량 제어기 개발)

  • Lim, Geon-Pyo;Choi, In-Kyu;Park, Doo-Yong;Jeong, Tae-Won;Kim, Gun-Jung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1663-1672
    • /
    • 2010
  • The boiler feed-water pump controllers which can be applied to 500MW class coal fired power plants was developed. The validity of the developed controllers was shown via the applied test result in a power plant. It is expected that the developed controllers are used to retrofit the existing controllers that have surpassed their expected service life and have limited spare parts, and contributes to the stable operation of plants. Based on the collected data and analysis, new control schemes were developed and implemented during the overhaul period in the new control systems. During normal operation, feed water could be supplied to the boiler with the capability of the 1600t/h flow without any problems in automatic mode of controllers. In this study, the feed-water pump controllers were developed successfully. In addition, it is expected that the developed controllers can make the plant operation more stable and can be applied to a lot of power plants.

Performance Variations of River Water Source Heat Pump System According to Heat Exchanger Capacity Variations (열교환기 용량변화에 따른 하천수열원 열펌프의 성능 변화)

  • Park, Seong-Ryong;Baik, Young-Jin;Kim, Hee-Hwan;Lee, Young-Soo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1530-1535
    • /
    • 2003
  • The utilization of unused energy is important because it can afford to offer a chance to increase energy efficiency of a heat pump system. One of the promising unused energy sources is river water. It can be used as a heat source in both heating and cooling effectively with its superior features as a secondary working fluids. In this study, the performance of a 5HP heat pump system using river water as a heat source is investigated by both experiment and simulation. According to system simulation results, performance improvement of condenser seems more effective than that of evaporator for better $COP_H$. The serial connection is also preferred among several methods to improve plate type heat exchanger performance. The experimental results show that the hot water of $50{\sim}60^{\circ}C$ can be acquired from water heat source of $5{\sim}9^{\circ}C$ with $COP_H$ of $2.7{\sim}3.5$.

  • PDF

A Study on the Performance Evaluation of Combined Heat Pump System according to the Ratio of Ground Heat Source and Water Heat Source (지열원 및 수열원 비율에 따른 복합열원 히트펌프시스템 성능 평가 연구)

  • Park, Sihun;Ko, Yujin;Min, Joonki
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.2
    • /
    • pp.11-19
    • /
    • 2021
  • In this study, combined heat source heat pump system was implemented with 4 single heat source heat pumps each applied with a geothermal source and a water source. Five cases (Case1~Case5) were configured to conduct a performance comparison and analysis of the combined heat source heat pump system. First of all, as a result of analyzing the heat source, the case when 4 ground heat sources were applied (Case1) showed a uniform EST(Entering Source Temperature) distribution throughout the year since it is less affected by outside air compared to the case when 4 water heat sources were applied (Case5). In both winter and summer, the ground heat source maintained higher EST than the water heat source. Therefore, the system with high ratio of geothermal sources is advantageous for heating, and with high ratio of water heat sources is advantageous for cooling.

A Study on the Experimental Trend Analysis of Underwater Noise Factors in Compressed Water System of the Linear Pump Type (선형펌프방식 압축수 시스템의 실험적 수중소음인자별 경향분석 연구)

  • Yi, Jong-ju;Ahn, Kang-su;Sur, Jong-mu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.228-236
    • /
    • 2021
  • In order to understand the underwater noise source factor of the linear pump type forced ejection system, a reduced-model compressed water experiment device was developed. The reduced-model compressed water experiment device consists of a reverberation tank, a linear pump type forced ejection device, and an underwater vehicle. The underwater noise source was selected from the hydraulic ram moving speed, the hydraulic ram/piston pipe spacing, the ejection pipe inlet/water ram area ratio, and the number of water ram inlets. The underwater vehicle was ejected into the reverberation tank by the device. The source level was derived from the measured sound pressure. The source level tends to increase as the hydraulic ram/piston tube spacing and the hydraulic ram moving speed increase. The source level tended to increase as the area ratio was increased, but the level was weak. The number of water ram inlet did not affect the source level.

Performance of water-jet pump under acceleration

  • Wu, Xian-Fang;Li, Ming-Hui;Liu, Hou-Lin;Tan, Ming-Gao;Lu, You-Dong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.794-803
    • /
    • 2021
  • The instantaneous acceleration affects the performance of the water-jet pump obviously. Here, based on the user-defined function, the method to simulate the inner flow in water-jet pumps under acceleration conditions was established. The effects of two different acceleration modes (linear acceleration and exponential acceleration) and three kinds of different acceleration time (0.5s, 1s and 2s) on the performance of the water-jet pump were analyzed. The results show that the thrust and the pressure pulsation under exponential acceleration are lower than that under linear acceleration at the same time; the vapor volume fraction in the impeller under linear acceleration is 27.3% higher than that under exponential acceleration. As the acceleration time increases, the thrust gradually increases and the pressure pulsation amplitude at the impeller inlet and outlet gradually decreases, while the law of pressure pulsation is the opposite at the diffuser outlet. The main frequency of pressure pulsation at the impeller outlet is different under different acceleration time. The research results can provide some reference for the optimal design of water-jet pumps.

The Performance Characteristics of Heat Pump Using the Refrigerant Subcooling (냉매 과냉각을 이용한 열펌프 시스템의 성능 특성)

  • Roh, Geon-Sang;Son, Chan-Ghyo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.4
    • /
    • pp.413-421
    • /
    • 2007
  • In this paper, the performance characteristics of heat pump system using a new refrigerant subcooling system designed for the study, are introduced. The new heat pump system have the ice storage tank at the outlet of condenser. The experimental apparatus is a well-instrumented water/water heat pump which consisted of working fluid loop, coolant loop, and ice storage tank. The experiment parameters of subcooling ranged as the evaporating temperature from $-5^{\circ}C$ to $8^{\circ}C$, the condensing temperature from $30^{\circ}C$ to $35^{\circ}C$. The test of the ice storage was carried out at evaporating temperature of $-10^{\circ}C$ and the ice storage mode is Ice-On-Coil type. The working fluid was R-22 and the storage materials were city-water. The test results obtained were as follows; The refrigerant mass flow rate and compressor shaft power were unchanged by the degrees of subcooling, that is, they were independent of degrees of subcooling. The cooling capacity of the new heat pump system increase as the evaporating temperature and subcooling degrees increase and is higher by $25{\sim}30%$, compared to the normal heat pump system. The COP of the new heat pump system increases as the degrees of subcooling and evaporating temperature increase and is higher by 28% than that of the normal heat pump system.

Design of Multi-Regional Water Supply System Based on the Optimization Technique (최적화 기법을 이용한 광역상수도 관로시스템 설계)

  • Kim, Ju Hwan;Kim, Zong Woo;Park, Jae Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.1
    • /
    • pp.95-112
    • /
    • 1999
  • In this research, it is proposed that optimization method is introduced and applied to the design of pipeline system in multi-regional water supply project, which has been constructed to settle the regional unbalance problems of available water resources. For the purpose, interface programs are developed to integrate linear programming model and KYPIPE model which is used for optimization and hydraulic analysis, respectively. The developed program is applied to the pipeline system design of multi-regional water supply project. The optimal diameters from the application of linear programming technique are compared with those from conventional method that is time-consuming and tedious trail and error process. Since the conventional design largely depends upon the experience of designers and the results of general hydraulic analysis, it can not be reasonable and consistent. The application of linear programming technique can make it possible to design pipeline system optimally by using same design factors of general hydraulic models. The model can select commercial discrete pipe diameter as optimal size by using pipe length as decision variables. The developed model is applied to Pohang multi-regional water supply system design with two different objective functions, which are initial construction cost and annual cost including electric cost. As results, it is calculated that the initial construction cost of 1,449,740 thousand won is saved and annual cost of 128,951 thousand won is saved for a year within study year. Also, the optimal site of pump station is selected on 5th pipe, which is located between the diverging junction to Kangdong(2) province and the diverging junction to Cheonbuk province. It is explained that pump cost is less than pipe cost in this application case study due to little pump station scale. In the case of water supply with large pump capacity, it is reasonal that the increase of pipe size is more efficient instead the increase of pump station capacity to save annual cost.

  • PDF