• 제목/요약/키워드: Water pipe supply

Search Result 265, Processing Time 0.028 seconds

The Experimental Study of Scale Removal Using Ultra High Water Pressure in the Old Steel Water Pipe (초고압수를 이용한 노후한 도수 강관 내 스케일 제거에 대한 실험적 연구)

  • Seo, Taewon;Kim, Jin-Dong;Seo, Hyun-Won;Kim, Taedong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.4
    • /
    • pp.405-409
    • /
    • 2008
  • This technical paper is proposing a sound concept in the application of the rehabilitation method of the water supply steel pipe in the large diameter ranged from 1,800mm to 3,500mm. There were conducted the experimental tests for the specimens as well as the real steel pipe of diameter 2,200mm. The water pressure ejected from nozzle tip should be at least 2,500bar to have the satisfied surface profiles required in the design criterion. The most difficult thing is to keep the water pressure at the nozzle tip as 2,500bar during the consecutive work in the interval of the work site more than 1km. It is found that the method suggested in this study is adequate method to meet the specified design criteria. The results of this study provide the useful information how to setup the equipments for the successful work. This method also provides not only the omission of the blasting process but also the effect of the budget reduction.

Verification and Calribration of Hydraulic Analysis of Water Supply System Using Fluoride Tracer (불소를 이용한 상수관망 수리해석의 검증 및 보정)

  • Joo, Dae-Sung;Park, No-Suk;Park, Heekyung;Oh, Jung-Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.2
    • /
    • pp.76-82
    • /
    • 1998
  • It is necessary to calculate the accurate velocity from the hydraulic model for the reliable prediction of water quality changes in water supply system. To verify the hydraulic analysis of the water supply system, fluoride was used as a tracer to calculate the travel time from the injection point to the sampling points. Results from this field experiment indicate that fluoride can be a good conservative tracer while it showed a little longitudinal dispersion along the pipe lines. And the velocity from the model was verified by these travel times and calibrated by changing the ratio of the unaccountable water. When the ratio of the unaccountable water. When the ratio of the unaccountable water was 20%, the error between the estimation of hydraulic model and the real travel time was minimum.

  • PDF

Development of the algorithms for establishing the relative positional relations between node-pipe-valve of water pipe networks (상수도 관망의 노드-파이프-밸브 사이의 상대적 위치 관계를 수립하기 위한 알고리즘의 개발)

  • Park, Suwan;Jeon, Ye Jun;Kim, Kyeong Cheol;Lee, Hyun Dong
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1187-1195
    • /
    • 2022
  • To run the algorithm for identifying the segments of a pipe network, the relative positional relation between nodes, pipes, and valves should be prepared as input information of a segment search algorithm. In order to more accurately identify the segments of real pipe network, pipe network GIS/CAD database that contains all isolation valves is more suitable than modeled pipe network information used for a hydraulic analysis program. In this study, we developed an algorithm that can establish the relative positional relations among node-pipe-valve suitable for pipe network segment search algorithms using GIS/CAD data of a real water supply network, and developed a MATLAB program that can implement it. The effectiveness of the developed MATLAB program was confirmed by applying it to a portion of a real municipal pipe network.

Theoretical Velocity Analysis of Micro Robot Based on Crawling Locomotive Mechanism for Pipe Inspection Micro Robot (Crawling 방식을 이용한 관 탐사용 소형 로봇의 이동속도 해석)

  • Jang, Ki-Hyun;Park, Hyun-Jun;Kim, Byung-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.8
    • /
    • pp.633-641
    • /
    • 2008
  • Recently, the necessity for diagnosis and management of pipes has emerged as the issue due to contamination of water supply generated by corrosion of pipes. Although inspection has been performed with industrial endoscopes, the method has limits for full diagnosis of pipes due to the lack of working range. As a solution for this problem, many locomotive mechanisms for a micro robot with endoscope functions were proposed. In this paper, we analyze the locomotive mechanism of crawling robot proposed as locomotive device for pipe inspection. Based on a mechanical modeling of motor and micro robot inside small pipe, the theoretical formula for velocity is obtained. This derived theoretical formula is demonstrated the feasibility through the comparison with experimental result. Also, we could find the most important element influencing the moving velocity of micro robot when the robot operates in small pipe. Consequently, it is expected that this study can supply useful information to design of crawling robot to move in small pipe.

Study on Seismic Fragility Analysis of Water Supply Facilities (상수도 시설물의 지진 취약도)

  • Lee, Changsoo;Shin, Deasub;Lee, Hodam
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.1
    • /
    • pp.35-43
    • /
    • 2015
  • In this study, The failure of water supply facilities is categorized into two phases: functional failure and complete collapse. The fragility curve of water supply facilities under PGA has been developed for two loading cases: actual overseas earthquake and Korean artificial earthquake. The seismic fragility of water supply facilities has been analyzed and compared about failure phases and PGA. From the analysis results, the probability of failure of the wrapped steel pipe and ductile case iron pipe under Korean artificial earthquake has been shown as lower than that under actual overseas earthquake in the range from 0.1 to 0.4. The suggested seismic fragility curve by using Korean artificial earthquake can be exploited in a reasonable seismic design reflecting Korean local ground condition.

A study on the evaluation for variation of revenue water ratio considering water supply area conditions and the development of proper cost estimation model of project for improvement of revenue water ratio (급수지역 여건을 고려한 유수율 변동 분석 및 적정 유수율 제고 사업비 산정 모델 개발)

  • Kiwon Kwon;Jinseok Hyung;Taehyeon Kim;Haekeum Park;Yoojin Oh;Jayong Koo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.6
    • /
    • pp.409-423
    • /
    • 2023
  • In this study, we analyzed how the revenue water ratio(RWR) is affected by changes in conditions of the water supply area, such as the ratio of aging pipes, maintenance conditions, and revenue water. As a result of analyzing the impact of pipe aging and maintenance conditions on the RWR, it was confirmed that the RWR could be decreased if the pipe replacement project to improve the aging pipe ratio was not carried out and proper maintenance costs were not secured. It was also confirmed that an increase in the revenue water could be operated to facilitate the achievement of the project's target RWR. In contrast, a decrease in the revenue water due to a population reduction could affect the failure of the target RWR. In addition to analyzing the causes of variation in the RWR, the calculation of estimated project costs was considered by using leakage reduction instead of RWR from recent RWR improvement project cost data. From this analysis, it was reviewed whether the project costs planned to achieve the target RWR of the RWR improvement project in A city were appropriate. In conclusion, the RWR could be affected by variations in the ratio of aging pipes, maintenance conditions, and revenue water, and it was reasonable to consider not only the construction input but also the input related to RWR improvement, such as leakage reduction, when calculating the project cost.

A Study on Adequacy of Pipe Deterioration Evaluation Methods using the Endoscope of Water Distribution Pipe (배수관 내시경 조사를 통한 간접적인 관 노후도 평가방법의 적정성 연구)

  • Choi, Tae Ho;Kang, Sin Jae;Choi, Jae Ho;Koo, Ja Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.5
    • /
    • pp.669-683
    • /
    • 2012
  • The water supply pipes are buried across wide range of areas, so it is hard to spot them using excavation and takes a large amount of expense. Thus, there is a high risk for direct research and application, accompanying many difficulties in implementation of them. Therefore, it is more economical and convenient to use indirect evaluation variables than direct evaluation of the buried pipes in assessing the degree of pipe deterioration. To assess the degree of pipe deterioration using the indirect evaluation variables, it should be done first to identify how and to what extent they affect the degree of deterioration. This study measured the evaluation variables for pipe deterioration using the pipe endoscope and analyzed the measurement results and the degree of impact on the pipes. In addition, this study attempted to evaluate the adequateness of the pipe deterioration evaluation using the indirect variables based on the analysis results. The evaluation variables measured through the pipe endoscope were the thickness of sediments, size of scale, degree of desquamation and condition of connections. For the indirect evaluation variables, the data such as the property data from GIS pipe network map as well as the material, diameter, age and pipe lining material of the pipe, road type, leakage frequency, average water velocity and water pressure using the leakage repair records was collected. Using the collected data, this study comparatively analyzed the indirect evaluation variables for the degree of pipe deterioration and the results from the pipe endoscope to choose appropriate variables for pipe deterioration evaluation and calculated the weights of the indirect variables on the degree of deterioration. The results showed that the order of the impact of indirect variables on deterioration was pipe age > pipe lining material > road type > leakage frequency > average water velocity with their weights of 0.45, 0.20, 0.15, 0.10, and 0.10, respectively. Conclusively, the results suggest that the measures of sediment thickness, scale size, degree of desquamation and condition of connections are appropriate for the evaluation of pipe deterioration and sufficient for the analysis of the impact of the indirect variables on deterioration.

Numerical Analysis of Mixing Flow in a Small-Scale Water Supply System (간이상수도에서의 혼합유동에 대한 수치해석)

  • Yoo, Young-Hyun;Ki, Hyun;Choi, Jong-Wook;Kim, Sung-Cho;Kim, Yong-Seon;Lee, Yong-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.6
    • /
    • pp.460-466
    • /
    • 2009
  • The mixing method of water and chemicals is significant in a small-scale water supply system because drinking water should be supplied with a certain quantity of remaining chemicals maintained. In the present study, the concentration distribution and the mixing index were obtained from four models, which were to find out the optimal mixing method of water and chemicals. The two models brought the good mixing effects out of the four, one for providing chemicals from the center of water supply pipe and the other for setting up the semicircle block at the downstream of the chemicals-providing pipe. As a result, the mixing effect was found out to be increased due to the diffusion and the disturbance of flows. In conclusion, these numerical results are expected to contribute to designing the optimal mixing system.

Influences of pH on Heavy Metal Leaching in Water Supply Pipelines (상수도관내 중금속 용출에 대한 수소이온농도의 영향 평가 연구)

  • Lee, Jeongwon;Noh, Yoorae;Park, Joonhong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.73-82
    • /
    • 2017
  • In Korea, previous certification of water supply infrastructure was mainly focused on economical and physical aspects. Recently, hygienic safety of water supply service has become a sensitive and important issue to our people for evaluating the water quality with growth of economy and education system. According on water quality in 497 Korean water supply facilities, pH values in the supplied water have ranged between 5.8-8.5. However, little is known about metal leachability at the pH conditions observed in the real water supply systems because a fixed pH condition (pH 7.0) has been used in the current standard method, 'Hygienic Safety Testing Method', in water supply. In this work, we examined the effects on heavy metal leachability with pH differences in the water supply pipes which are typically used in Korea. As a result, the amounts of metal leachability were tended to increase when pH levels were decreased. Especially at pH 5.8, Cu leachability from Cu pipes was found to exceed the public health standard level even after applying a normalization factor (NF) given by the current Korea standard method. The Cr and Cu leached from stainless steel pipes, Cd, Pb, Cu, and Zn from Cu-based pipe fittings, and Zn from Zn-based pipe fittings were exceeded the Korean hygienic safety standards while, after applying the NF, concentrations of the leached metals were satisfied with the current Korean standard. The findings from this work provide implications on the needs of reforming the current hygienic safety standard methodology.

A study on the basic experiment of performance criteria for application of pipe bursting method in actual field (Pipe Bursting 공법의 적용성 검토를 위한 주요 성능평가 항목의 기초실험연구)

  • Park, Sangbong;Kim, Kibum;Seo, Jeewon;Park, Sanghyuk;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.5
    • /
    • pp.435-443
    • /
    • 2018
  • Most of aged water supply pipes have been replaced by the open cut method. However, this method has some limitations because water pipes, in many cases, are buried together with other underground facilities or are buried in the middle of high-traffic roads or in narrow alleyways where boring machines cannot be used. This research developed a pipe bursting device for small diameter pipes that enables pipe replacement without excavating the ground, by the busting of existing buried pipes followed by the traction and insertion of new pipes. As a results of examining the field applicability of the developed device, PE pipes and PVC pipes required the tractive force of 413.65~665.69 kgf and 457.43~791.35 kgf respectively, plus an additional 30 % tractive force per elbow. The proper number of bursting head was demonstrated that the connection of more than 2 heads could secure a stable bending radius of 15D. The developed device can be improved through field experiments involving various pipe types and pipe diameters, as well as presence/absence of elbow, so as to be utilized regardless of diverse variables according to the conditions of the soils surrounding existing pipes.