• Title/Summary/Keyword: Water pipe supply

Search Result 265, Processing Time 0.027 seconds

Mixing Method of Water and Chemicals in a Small-Scale Water Supply System (간이상수도에서 물과 약품의 혼합방법)

  • Yoo, Young-Hyun;Ki, Hyun;Choi, Jong-Wook;Kim, Sung-Cho;Kim, Jeong-Soo;Kim, Yong-Seon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3128-3133
    • /
    • 2007
  • The mixing method of water and chemicals is significant in a small-scale water supply system because drinking water should be supplied with a certain quantity of remaining chemicals maintained. In the present study, the concentration distribution and the mixing index were obtained from four models, which were to find out the optimal mixing method of water and chemicals. The two models brought the good mixing effects out of the four, one for providing chemicals from the center of water supply pipe and the other for setting up the semicircle block at the downstream of the chemicals-providing pipe. As a result, the mixing effect was found out to be increased due to the diffusion and the disturbance of flows. In conclusion, these results are expected to contribute to designing the optimal mixing system.

  • PDF

Economic-based approach for predicting optimal water pipe renewal period based on risk and failure rate

  • Kim, Kibum;Seo, Jeewon;Hyung, Jinseok;Kim, Taehyeon;Kim, Jaehag;Koo, Jayong
    • Environmental Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.63-73
    • /
    • 2019
  • This study suggests a method for calculating the benefits of water pipe renewal based on an estimate of the water supply suspension risk. The proposed method based on five benefit items is more direct and specific than other benefit estimation methods. In addition, a methodology evaluating the economics of pipe renewal based on pipe failure rate is proposed for estimating the optimal renewal point from an economic perspective. By estimating the optimal renewal period based on a yearly benefit cost ratio per pipe in a case study area, it was possible to draft an optimal renewal plan for the subject region from an economic perspective. Compared with other methodologies, a reasonable optimal renewal period was derived from an economic point of view. The result of this study may be used to develop future water pipe renewal plans. Moreover, the proposed methodologies and results derived from this study can be applied to asset management plans.

Design of Closed Loop Pipe Cooling System (냉각수 순환 형태의 파이프 쿨링 공법의 설계)

  • 박찬규;왕인수;구자중
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2001.11a
    • /
    • pp.52-57
    • /
    • 2001
  • In order to control hydration heat in mass concrete, pipe cooling method has been widely used. The pipe cooling method leads to the decrease of curing period by lagging materials as well as the decrease of temperature difference between center and surface of mass concrete member, There are two methods in the pipe cooling system, which are open loop system and closed loop system. However open loop pipe cooling system cannot be applied to the mass concrete structures when cooling water supply is difficult. To control hydration heat of high strength mass foundation in the central area of city, closed loop pipe cooling system was developed to solve the cooling water supply. This paper reports the performance results of hydration heat control with closed loop pipe cooling system.

  • PDF

Evaluation of Risk Factors to Detect Anomaly in Water Supply Networks Based on the PROMETHEE and ANP (상수도관망의 이상징후 판정을 위한 위험요소 평가 - PROMETHEE와 ANP 기법 중심으로)

  • Hong, Sung-Jun;Lee, Yong-Dae;Kim, Sheung-Kown;Kim, Joong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.1 s.162
    • /
    • pp.35-46
    • /
    • 2006
  • In this study, we proposed a layout of the integrated decision support system in order to prevent the contamination and to manage risk in water supply networks for safe and smooth water supply. We evaluated the priority of risk factors to detect anomaly in water supply networks using PROMETHEE and ANP techniques, which are applied to various Multi-Criteria Decision Making area in Europe and America. To develop the model, we selected pH, residual chlorine concentration, discharge, hydraulic pressure, electrical conductivity, turbidity, block leakage and water temperature as the key data item. We also chose pipe corrosion, pipe burst and water pollution in pipe as the criteria and then we present the results of PROMETHEE and ANP analysis. The evaluation results of the priority of risk factors in water supply networks will provide basic data to establish a contingency plan for accidents so that we can establish the specific emergency response procedures.

Liquidity Evaluation on the Horizontal Branch Pipe Connected to a Food Waste Disposer (디스포저에 의한 음식물류폐기물 횡지관 유동성 평가)

  • Jang, Choon-Man;Lee, Sang-Moon;Kim, Chul-Kyu;Park, Se-Joon;Yu, Jong-Chan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.1
    • /
    • pp.53-58
    • /
    • 2017
  • This paper describes liquidity evaluation on the horizontal branch pipe connected to a food waste disposer and performance of five disposers marketed. Experimental apparatus for analyzing the five disposers has been introduced to measure vibration, sound level and power consumption of the disposers. Simulator for analyzing the required water velocity to avoid waste jam inside the pipe connected to a food waste disposer has been designed and constructed. The simulator can control some experimental parameters: pipe slope, disposer supply water quantity, food waste materials and operation time of a disposer. Throughout the experimental measurements of the disposers marketed, it is found that the time need to crash food waste is about 20 seconds on the average. At the same flow condition, increase rate of internal water velocity is accelerated as the pipe slope increases. The water velocity inside the pipe having 50 A and slope of 1/50 is 0.26 m/s when the water flowrate to supply the disposer is 16 l pm. Considering the specific gravity and adhesion property of food waste, water velocity of the horizontal branch pipe connected to a food waste disposer need to excess 0.26 m/s at least to avoid the waste blockage inside the pipe.

Evaluation and Analysis of Characteristics for Hazen-Williams C Based on Measured Data in Multi-Regional Water Supply Systems (광역상수도 실측자료를 활용한 유속계수 평가 및 특성 분석)

  • Kim, Bumjun;Choi, Myungwon;Kim, Gilho;Kim, Hungsoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.2
    • /
    • pp.197-206
    • /
    • 2016
  • Although the Hazen-Williams C factors are very important in the design, operation, and maintenance of water supply pipes, sufficient studies for them have been not reported in korea, which are based on experiments or measured data. Because of this, we have estimated C factors by measurement considering constraints in time precise safety diagnosis for multi-regional water supply system were performed. In this study, we confirmed constraints and variables characteristics of Hazen-Williams equation, and collected reliable C factors data of 174 by measurement, and analyzed their characteristics. According to collected data, the average value is 115.35, which is almost equal to the value of design standard or a little higher than it in korea. Also, among the equations suggested to determine C factor in the past, the C factors calculated by Sharp and Walski equation was closest to them in this study. In addition, to analyze collected C factors, use year and pipe diameter having high correlation with them were respectively divided into there categories. Analysis results showed that C factors evidently decreases depending on increases in use year, on the other hand, size of pipe diameter is proportional to value of them. In conclusion, this research showing evaluation and characteristics for C factors based on measured data will be used as practical reference in determining C factor in multi-regional water supply systems at a later date.

Prioritization decision for hazard ranking of water distribution network by cluster using the Entropy-TOPSIS method (Entropy-TOPSIS 기법을 활용한 군집별 상수도관망 위험도 관리순위 결정)

  • Park, Haekeum;Kim, Kibum;Hyung, Jinseok;Kim, Taehyeon;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.517-531
    • /
    • 2021
  • The water supply facilities of Korea have achieved a rapid growth, along with the other social infrastructures consisting a city, due to the phenomenon of urbanization according to economic development. Meanwhile, the level of water supply service demanded by consumer is also steadily getting higher in keeping with economic growth. However, as an adverse effect of rapid growth, the quantity of aged water supply pipes are increasing rapidly, Bursts caused by pipe aging brought about an enormous economic loss of about 6,161 billion won as of 2019. These problems are not only worsening water supply management, also increasing the regional gap in water supply services. The purpose of this study is to classify hazard evaluation indicators and to rank the water distribution network hazard by cluster using the TOPSIS method. In conclusion, in this study, the entropy-based multi-criteria decision-making methods was applied to rank the hazard management of the water distribution network, and the hazard management ranking for each cluster according to the water supply conditions of the county-level municipalities was determined according to the evaluation indicators of water outage, water leakage, and pipe aging. As such, the hazard ranking method proposed in this study can consider various factors that can impede the tap water supply service in the water distribution network from a macroscopic point of view, and it can be reflected in evaluating the degree of hazard management of the water distribution network from a preventive point of view. Also, it can be utilized in the implementation of the maintenance plan and water distribution network management project considering the equity of water supply service and the stability of service supply.

Evaluation of Corrosion Index by Water Quality Parameters in Korea (국내 수질에 적합한 부식성지수 선정 연구)

  • Ahn, Kyunghee;Yu, Soonju;Park, Sujeong;Kwon, Ohsang
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.4
    • /
    • pp.615-623
    • /
    • 2012
  • In this study, we evaluate the corrosion indexes (CI) such as Langelier Index (LI), Larson ratio (LR), Ryznar saturation index (RSI), Aggressiveness index (AI) of water quality for raw water, treated water and water in distribution reservoir at major eight drinking water treatment plants (DWTPs) in Korea. By analyzing secondary contamination of tap water, the variation of secondary contaminants was investigated with regard to pipe materials, aging and corrosion index (CI). In addition, we suggested an appropriate CI applicable water quality and the management plan for CI monitoriing. All CI showed corrosive water quality, and they did not change significantly in the distribution network. However, Copper (Cu), iron (Fe) and zinc (Zn) concentrations as secondary contaminants increased through the distribution network. Among CI, LI was most sensitive to changes in raw water quality and drinking water treatment. Also, it has high correlations with other indexes such as RSI, AI. Therefore, LI is considered as an appropriate CI to the domestic water quality. Based on these result, we propose LI as a drinking water quality standard to control the pipe corrosion from DWTPs.

Simulation of Pipe Network for Optimum Heat Supply in the Hot Water Heating System of Apartment House (공동주택 온수난방 시스템의 적정 열공급을 위한 배관망 시뮬레이션)

  • Kim, J.Y.;Mim, M.K.;Choi, Y.D.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.3
    • /
    • pp.157-168
    • /
    • 1993
  • Pipe network of hot water heat supply system in an apartment house was analyzed. Flowrate and supply heat capacity of each household in which constant flowrate balancing valve is installed in a single zone system were calculated and the results were investigated. In the existing piping system, the non-uniformity of heat supply with floors due to the static pressure and temperature difference between supply main and return main can not be avoided and this tendency get intense with the increase of the height of building. The non-uniformity of heat supply can be prevented by the installation of balancing valve at each household, however if the performance of supply pump is not sufficient to overcome the energy loss due to the installation of balancing valve for constant flow rate or if the selection of the valve capacity is not adequate, the valves will may lose their controllability.

  • PDF

Feasibility Study of Multi-regional Transmission Main Stabilization for Sustainable Water Supply (수돗물 공급 안정화를 위한 광역상수도 관로 안정화 타당성 연구)

  • Lee, Jae Bum;Yi, Choong Sung;Jung, Kwan Sue
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.3
    • /
    • pp.395-404
    • /
    • 2013
  • The risk of pipe-bursting in multi-regional transmission mains consisting of 89 % of singled pipeline is so high that pipeline stabilization project is required such as renewal and replacement, pipe paralleling, emergency ties. Pipeline stabilization projects could be postponed at the step of initial decision-making because effect of this project is intangible benefit like activation of economic, improvement of welfare related to water. This study is to suggest quantified economical feasibility model for intangible benefit presumption to solve above problem. Cost reduction of emergency water supply, leakage, burst restore and energy efficiency improvement was altered and applied. As a result of economic analysis taking into account estimated benefit and cost under discount rate 5.5 %, service life 40 years, sufficient economic feasibility analyzed with B/C 2.45, NPV 317,700 million won, IRR 9.09 %.