• Title/Summary/Keyword: Water permeation

Search Result 479, Processing Time 0.027 seconds

[ $Ag^+$ ]-Chitosan Complex Membranes for Propylene/Propane Separation

  • Kim, Jeong-Hoon;Lee, Soo-Bok;Feng, Xianshe
    • Korean Membrane Journal
    • /
    • v.8 no.1
    • /
    • pp.36-42
    • /
    • 2006
  • We have prepared new water-swollen chitosan-$Ag^+$ complex membranes and studied their permeation and separation behavior for propylene and propane gases. The $Ag^+$ containing chitosan complex membranes were prepared from chitosan and $AgNO_3$ aqueous solution. The $AgNO_3$ and water content in the membrane were controlled by adjusting $AgNO_3$ concentration of casting solution. The permeation properties of propylene and propane were investigated as a function of $AgNO_3$ concentration, and various operation conditions. High permeability of above 17 barrer and high selectivity of above 170 could be obtained with the membranes prepared from 3 M $AgNO_3$ aqueous solution. Periodic regeneration test confirmed these membranes could be very useful for the separation of propylene/propane and other olefin/paraffin separation.

Prepartion and Microstructure Changes with Swelling of Polyion Complex membranes Based on the K-Carrageenan

  • Jegal, Jonggeon;Lee, Kew-Ho
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.04a
    • /
    • pp.61-62
    • /
    • 1994
  • In order to prepare polyion complex membranes useful for the separation of water-alcohol by pervaporation, k-carrageenan containing artionic sulfate groups in the backbone and good hydrophilicity was selected for the polyanion membrane material and poly{1,3-bis[4-butyl pyridinium] propane. bromide}, one of the polycations synthesized in our lab and containing cationic pyridinium groups., was used. The polyion complex membranes were prepared by the ion complex formation between kcarrageenan films and poly{1,3-bis[4-butyl pyridinium] propane. bromide}. On the formation process of polyion complex membranes, the way of potyion complex formation was carefully studied. In order to study the effect of the morphology on the permeation properties of the polyion complex membranes, which is one of the important factors affecting on the permeation properties of membranes but rarely studied, the microstructure behaviors of the polyion complex mem6ranes in methanol-water mixtures with different compositions Were also studied with x-ray diffractometry and polarizing microscopy.

  • PDF

Surface Modification of PET Fabrics Treated with Sputter Etching (Sputter etching 처리에 의한 PET직물의 표면개질)

  • Koo, Bon Sik;Kim, Yong Hae;Cho, Yeun Chung;Park, Ki Ho;Won, Eun Hee;Koo, Kang;Son, Tae Won
    • Textile Coloration and Finishing
    • /
    • v.9 no.2
    • /
    • pp.50-56
    • /
    • 1997
  • Poly(ethylene terephthalate) (PET) has been etched by sputtering in the presence of argon gas and the resulting surface modifications investigated via weight loss, time of water permeation, half value period, scanning electron microscope(SEM) and color difference measurements. According to increasing sputter etching time, weight loss increased, the time of water permeation and half value period of the sputter etched PET fabrics decreased. Color depth of fabrics increased by increasing sputter etching time. We investigated the fabric surface modification by SEM. Many microcraters on the fabric surface formed by the sputter etching resulted in increase of surface area of the fabric and wettability.

  • PDF

pH-sensitive Swelling Behavior of Poly(vinyl alcohol)-hyaluronic Acid Polymer Hydrogel Membranes

  • Ji, Hye Won;Chon, Se Won;Yoon, Tae Il;Hwnag, Ho Sang;Kwon, Ji Young;Shin, Seung Hoon;Chung, Sung Il;Rhim, Ji Won
    • Korean Membrane Journal
    • /
    • v.6 no.1
    • /
    • pp.24-29
    • /
    • 2004
  • Poly(vinyl alcohol)(PVA) and hyaluronic acid(HA) hydrogel membranes were prepared with varying HA contents from 10 to 50 wt% of PVA. The water contents of the resulting PVA-HA hydrogel membranes in various pH conditions were measured. And the permeation coefficient of indomethacin was determined using several PVA-HA hydrogel membranes at various pH conditions and also 37$^{\circ}C$.

Chemical Compatibility of Solidified Liner Materials (매립장 고화차수재의 화학용액과의 반응특성)

  • 정하익;조진우;임재상;김상길
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.343-346
    • /
    • 2002
  • The chemical compatibility of leachate with the two natural materials was analyzed by performing the hydraulic conductivity test. The selected liner materials were natural marine clay and weathered soil sampled from Kimpo wastefill and Daehwa Dong, Kyonggi Do, respectively. PARAFIX, which is mainly composed of paraffin, cement, stearic acid, PVA etc., was used as solidifying agent. The chemical solutions used in the test were 10% acetic acid, 10% methanol, and real leachate from Kimpo wastefill and the results of tests were compared with that of distilled water. The results of tests show that hydraulic conductivity of solidified clay was increased slightly with permeation of acetic acid, methanol and the increase of hydraulic conductivity was not shown with permeation of leachate, distilled water and in case of weathered soil. Based on the tests, it is ascertained that the tested liner materials can be stable with the solution of low concentration.

  • PDF

Permeation Properties of Single Gases ($N_2$, $O_2$, $SF_6$, $CF_4$) through PDMS and PEBAX Membranes (PDMS와 PEBAX 분리막을 통한 단일기체($N_2$, $O_2$, $SF_6$, $CF_4$) 투과 특성)

  • Kim, Hanbyul;Lee, Minwoo;Park, Wankeun;Lee, Soonjae;Lee, Hyunkyung;Lee, Sanghyup
    • Membrane Journal
    • /
    • v.22 no.3
    • /
    • pp.201-207
    • /
    • 2012
  • In this study, we investigated permeation of single gas ($N_2$, $O_2$, $CF_4$, and $SF_6$) through flat sheet membrane composed of PDMS (poly-dimethylsiloxane) and PEBAX (polyether block amides). Gas permeation experiment was performed with various feed pressure. Permeability was estimated using permeation flux measured by continuous-flow technique. The permeability of gases except $SF_6$ in PDMS were decreased with the upstream pressure increased. $SF_6$ is much more permeable than $CF_4$, which is due to higher critical temperature of $SF_6$. The permeability decreased in the following order: $O_2$ > $N_2$ > $SF_6$ > $CF_4$. On the other hand, the permeability of gases in PEBAX followed the order: $O_2$ > $N_2$ > $CF_4$ > $SF_6$ which are opposite of the order of kinematic diameter (${\AA}$)($SF_6$ > $CF_4$ > $N_2$ > $O_2$). The $SF_6/CF_4$ pure gas selectivity in PDMS was 2.1 at 0.7 MPa.

Separation Characteristics of Oxygen Isotopes with Hydrophobic PTFE Membranes (소수성 PTFE 막의 산소동위원소 분리특성)

  • 김재우;박상언;김택수;정도영;고광훈;박경배
    • Membrane Journal
    • /
    • v.13 no.3
    • /
    • pp.154-161
    • /
    • 2003
  • We measured the permeation characteristics of water with the hydrophobic PTFE membranes dependent on water temperature to confirm the separation of oxygen isotopes using Air Gap Membrane Distillation (AGMD) and Vacuum Enhanced Membrane Distillation (VEMD). Isotopic concentrations of $H_2^{16}O$ and $H_2^{18}O$ of the permeated water vapor were measured by Diode Laser Absorption Spectroscopy. Concentrations of the heavy oxygen isotopes in the permeated water vapor were decreased. Isotope separation coefficients for the hydrophobic PTFE membranes were 1.004∼1.01 depending on the experimental conditions. We observed the effects of air in membrane pores on the oxygen isotope separation. Isotope separation coefficients for the hydrophobic PTFE membranes without air in pores are higher than those for the membrane with air in pores.

Study on the Water-Vapor Permeation through the Al Layer on Polymer Substrate (폴리머 기판에 형성한 알루미늄 보호막의 수분침투 특성 연구)

  • Choi, Young-Jun;Ha, Sang-Hoon;Park, Ki-Jung;Choe, Youngsun;Cho, Young-Rae
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.12
    • /
    • pp.873-880
    • /
    • 2009
  • Water-vapor permeation through metallic barriers deposited on polymer substrates has been an important technological issue because the performance of the barrier is critical to the reliability of flexible organic devices. For the development of long-lifetime flexible organic devices, two different sets of samples were designed and demonstrated from the viewpoint of the water-vapor transmission rate (WVTR). Aluminum (Al) and polyethylene terephthalate (PET) were chosen for the barrier layer and the polymer substrate, respectively. Two stacking structures, a single-layer (Al/PET) structure and a double-layer (Al/PET/Al) structure, were used for the WVTR measurement. For the single-layer structure, the WVTR decreases as the thickness of the barrier layer increases. Compared to the single-layer sample, the double-layer sample showed superior WVTR performance (by nearly three times) when the total thickness of the Al barrier was greater than 100 nm.