• Title/Summary/Keyword: Water parameters

Search Result 5,602, Processing Time 0.034 seconds

Prediction of Turbidity in Treated Water and the Estimation of the Optimum Feed Concentration of Coagulants in Rapid Mixing Process using an Artificial Neural Network Model (인공신경망 모형을 이용한 급속혼화공정에서 적정 응집제 주입농도 결정 및 응집처리후 탁도의 예측)

  • Jeong, Dong-Hwan;Park, Kyoohong
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.1
    • /
    • pp.21-28
    • /
    • 2005
  • The training and prediction modeling using an artificial neural network was implemented to predict the turbidity of treated water as well as to estimate the optimized feed concentration of polyaluminium chloride (PACl) in a water treatment plant. The parameters used in the input layers were pH, temperature, turbidity and alkalinity, while those in output layers were PACl and turbidity of treated water. Levenberg-Marquadt method of feedforward back-propagation perceptron in the neural network toolbox of MATLAB program was used in this study. Correlation coefficients of the training data with the measured data were 0.9997 for PACl and 0.6850 for turbidity and those of the testing data with measured data were 0.9140 for PACl and 0.3828 for turbidity, when four parameters at input layer, 12-12 nodes each at both the first and the second hidden layers, and two parameters(PACl and turbidity) at output layer were used. Although the predictability of PACl was improved, compared to that of the previous studies to use the only coagulant dose as output layer, turbidity in treated water could not be predicted well. Acquisition of more data through several years obtained with the advanced on-line measuring system could make the artificial neural network useful and practical in actual water treatment plants.

Stability and Sensitivity Analysis of Stream Water Quality System Model (하천 수질모형 시스템의 안정성 및 민감도 분석)

  • 심순보;한재석
    • Water for future
    • /
    • v.21 no.4
    • /
    • pp.407-414
    • /
    • 1988
  • The purpose of this paper is to study the following ; (1) how the stability and sensitivity of a given stream water quality model can be analyzed theoretically by means of the stability theory and the sensitivity theory, and (2) point out that the results of this study prove that numerical analysis for the given stream water quality model is reliable, and the model is sensitive for the variations of parameters. A stability theory which is described by the infinite Fourier series is used to analyze the numerical scheme of the model. The numerical shheme is used a backward implicit scheme. a sensitivity theory which is described by the first order linear vector equation is used to analyze theoretically the effect of variations of water quality parameters such as BOD loads, flow rate, temperature. The results of sensitivity theory are of general applicability and are presented in a analytical form. The results of this study seems to be satisfactory for the reliability of stream water quality model with respect to the numerical scheme and the variations of the water quality parameters.

  • PDF

Removal Rates of VOCs(Volatile Organic Compounds) for Treatment Condition using DAF(Dissolved Air Flotation) in Water Treatment (DAF(Dissolved Air Flotation)를 이용한 정수처리에서 처리조건에 따른 VOCs(Volatile Organic Compounds)의 처리효율에 대한 연구)

  • Kim, Mi-Jeong;Jun, Se-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.3
    • /
    • pp.91-100
    • /
    • 1999
  • Treatment conditions of DAF(Dissolved Air Flotation) and removal rates of VOCs(Volatile Organic Compounds) in mixed water of H raw water and VOCs were investigated. The used VOCs were benzene, toluene, ethylbenzene, and xylene in aromatic compounds and iso propyl mereaptan, n-butyl mereaptan, dimethyl disulfide, and iso butyl mercaptan in odors. The related parameters include water type, treatment method, clay concentration, pH condition, flocculation time, flotation time, per-cent recycle, water temperature, pressure. The removal rates of VOCs were different on treatment process and water condition. Treatment time was longer, removal rates of VOCs was higher. Water temperature was more important than pressure in DAF parameters. Molecular weight was related with removal rate in several kinds of VOCs were decraesed by competition of each component in II raw water. When algac blooming D water was treated by DAF, TCOD(Total chemical Oxygen Demand) and chorophyll a was removed over 96%.

  • PDF

Comparison and Examination of the Calculating Hydrological Geographic Parameters Using GIS (GIS를 이용한 수문학적 지형인자 산정에 대한 비교검토)

  • Kim, Kyung-Tak;Choi, Yun-Seok;Lee, Hyo-Jung
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.1
    • /
    • pp.25-39
    • /
    • 2010
  • Recently, GIS softwares such as WMS, ArcHydro, and HyGIS which can calculate hydrological geographic parameters are popularized. These softwares have the functions to calculate various geographic parameters which are used in water resources from DEM (Digital Elevation Model). In this study, hydrological geographic parameters calculated by WMS and ArcHydro are compared and examined with them from HyGIS to evaluate the applicability of the parameters from HyGIS. Bochungcheon (Riv.), Wicheon (Riv.), Pyungchanggang (Riv.), Gyungancheon (Riv.), Naerincheon (Riv.), and Imjingang (Riv.) watersheds are selected for this study, and the shape of watershed, watershed area, watershed slope, the average slope of watershed, main stream length, main stream slope, maximum flow distance, and the slope of maximum flow distance are calculated to compare and examine the characteristics. Study results show that the average relative error of 7 geographic parameters from all the watersheds is 4.77 %, and all the watershed boundaries are very similar. So, all the geographic parameters calculated by each software show very similar value, and the geographic parameters calculated by HyGIS can be applied to water resources with WMS and ArcHydro which have been generally used.

Assessment of water quality variations under non-rainy and rainy conditions by principal component analysis techniques in Lake Doam watershed, Korea

  • Bhattrai, Bal Dev;Kwak, Sungjin;Heo, Woomyung
    • Journal of Ecology and Environment
    • /
    • v.38 no.2
    • /
    • pp.145-156
    • /
    • 2015
  • This study was based on water quality data of the Lake Doam watershed, monitored from 2010 to 2013 at eight different sites with multiple physiochemical parameters. The dataset was divided into two sub-datasets, namely, non-rainy and rainy. Principal component analysis (PCA) and factor analysis (FA) techniques were applied to evaluate seasonal correlations of water quality parameters and extract the most significant parameters influencing stream water quality. The first five principal components identified by PCA techniques explained greater than 80% of the total variance for both datasets. PCA and FA results indicated that total nitrogen, nitrate nitrogen, total phosphorus, and dissolved inorganic phosphorus were the most significant parameters under the non-rainy condition. This indicates that organic and inorganic pollutants loads in the streams can be related to discharges from point sources (domestic discharges) and non-point sources (agriculture, forest) of pollution. During the rainy period, turbidity, suspended solids, nitrate nitrogen, and dissolved inorganic phosphorus were identified as the most significant parameters. Physical parameters, suspended solids, and turbidity, are related to soil erosion and runoff from the basin. Organic and inorganic pollutants during the rainy period can be linked to decayed matters, manure, and inorganic fertilizers used in farming. Thus, the results of this study suggest that principal component analysis techniques are useful for analysis and interpretation of data and identification of pollution factors, which are valuable for understanding seasonal variations in water quality for effective management.

Calibration of Water Quality Parameters in SWAT Considering Continuous Drought Periods 2014~2015 (2014~2015 연속가뭄을 고려한 SWAT 수질 매개변수 보정)

  • Kim, Da Rae;Lee, Ji Wan;Jung, Chung Gil;Kim, Seong Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.1
    • /
    • pp.11-20
    • /
    • 2018
  • This study is to calibrate the SWAT (Soil and Water Assessment Tool) water quality of SS (Suspended Solid), T-P (Total Phosphorus), and T-N (Total Nitrogen) by focusing on 2014~2015 drought periods and identify the important parameters. For Gongdo watershed ($366.5km^2$), the SWAT was calibrated for 2 cases of 2002~2006 normal year focusing calibration and 2014~2015 drought focusing calibration respectively. The parameters of N_UPDIS (Nitrogen uptake distribution parameter) and CMN (Rate factor for humus mineralization of active organic nutrients) played important roles for T-N calibration during drought periods. The SWAT SS, T-N, and T-P average $R^2$ (Coefficient of determination) results by focusing on 2014~2015 drought periods calibration showed 0.71, 0.65 and 0.62 while 2002~2006 normal year focusing calibration showed 0.63, 0.58 and 0.50 respectively. Also SWAT SS, T-N, and T-P model efficiency NSE (Nash-Sutcliffe efficiency) results by focusing on drought period (2014~2015) calibrated showed 0.76, 0.77, 0.87 respectively. Even though the SS, T-P parameters were unchanged during the calibration, the SS and T-P results were improved by the hydrological parameters (SCS-CN, SOL_K, SLSOIL) during the drought periods. The SWAT water quality calibration needs to be considered for the movement of SS and nutrients transport especially focusing on the drought characteristics.

울산지역의 지하수 수질에 관한 통계학적 연구

  • 양운진
    • Journal of Environmental Science International
    • /
    • v.7 no.4
    • /
    • pp.461-466
    • /
    • 1998
  • One hundred and thirty two ground water samples from the Usan area were divided into urban and non-urban groupings and were assessed between 1993 and 1996. The results of statistical analysis were as follows: There were significant differences between the two groupings in the average value of the following water quality parameters: total hardness, nitrate , pH, iron, ammonia and chloride ion in the order of Z-score . Because total hardness, nitrate, and pH were also significant in ANOVA test, these three parameters can be regarded as the most sensitive parameters of artirial pollutants. By the comprehensive com- parison of Ulsan water Quality to that of Kangwon-do, all of the major parameters(pH, KMnO4 consumption, sulfate, chloride and hardness except nitrated were confirmed as being significantly Increased levels.

  • PDF

Effect of Flow Direction on Two-Phase Flow Distribution of Refrigerants at a T-Junction

  • Tae Sang-Jin;Cho Keum-Nam
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.717-727
    • /
    • 2006
  • The present study experimentally investigated the effect of flow direction and other flow parameters on two-phase flow distribution of refrigerants at a T-junction, and also suggested a prediction model for refrigerant in a T-junction by modifying previous model for air-water flow. R-22, R-134a, and R-410A were used as test refrigerants. As geometric parameters, the direction of the inlet or branch tube and the tube diameter ratio of branch to inlet tube were chosen. The measured data were compared with the values predicted by the models developed for air-water or steam-water mixture in the literature. We propose a modified model for application to the reduced T-junction and vertical tube orientation. Among the geometric parameters, the branch tube direction showed the biggest sensitivity to the mass flow rate ratio for the gas phase, while the inlet quality showed the biggest sensitivity to the mass flow rate ratio among the inlet flow parameters.

Studies on Chlorine Demand and Its Decay Kinetics in Chlorinated Sewage Effluents (하수의 염소 소독시 총잔류염소 감소 특성에 관한 연구)

  • Beck, Youngseog;Sohn, Jinsik
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.2
    • /
    • pp.176-183
    • /
    • 2005
  • Chlorination of wastewater is recently practiced in Korea. While many researchers have studied the kinetics of aqueous chlorine(HOCl) with nitrogeneous compounds and other organic/inorganic contaminants in drinking water, the researches of wastewater chlorination are relatively few. The purpose of this study was to investigate the chlorine decay kinetics and parameters on wastewater chlorination. Chlorine decay rate increased with increasing initial chlorine concentration. The parameters affecting chlorine decay rate were different in each wastewater treatment plant. One of the most important parameters affecting chlorine decay was initial chlorine concentration, and other parameters such as $NH_3-N$, total coliform, $UV_{254}$ and Fe were also affected. The decay ratio of chlorine was decreased with increasing initial chlorine concentration, and the disinfection efficiency showed good correlation with the decay ratio.

The Analysis of Groundwater Hydrograph According to the Variation of Hydrologic Physical Characteristics (수문학적 물리적 특성치의 변화에 따른 지하수 수문곡선 분석)

  • 김재한
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1987.07a
    • /
    • pp.123-137
    • /
    • 1987
  • The groundwater hydrographs due to the recharge of water table aquifer resulting from rainfall are simulated by relating the existing linearized method, which is originally the non-linear equation suggested by Boussinesq, to the basin charcteristics. To thes end, the recharge curve is assumed as the skewed distribution of sine curve, and the parameters contained in the equation are determined from the geomorphologic and soil maps. The whole drainage area is divied in order to consider the spatial variation of parameters. The obtained parameters are tried for several cases with different values given arbitrarily to study the aspects of hydrographs according to their variation. This procedures are applied to the natural basin of Bocheong watershed(area:475.5$\textrm{km}^2$) in Korea. As a result, it is shown that considerable uncertainty is expressed for the results obtained with the given values of parameters. Thus, such uncertainty should be precluded to a certain extent by examining and observing the physical characteristics as much as possible for the determination of groundwater flows.

  • PDF