• Title/Summary/Keyword: Water modeling experiment

Search Result 110, Processing Time 0.032 seconds

Development of Artificial Neural Network Model for Simulating the Flow Behavior in Open Channel Infested by Submerged Aquatic Weeds

  • Abdeen Mostafa A. M.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1576-1589
    • /
    • 2006
  • Most of surface water ways in Egypt suffer from the infestation of aquatic weeds especially submerged ones which cause lots of problems for the open channels and the water structures such as increasing water losses, obstructing the water flow, and reducing the efficiency of the water structures. Accurate simulation of the water flow behavior in such channels is very essential for water distribution decision makers. Artificial Neural Network (ANN) has been widely utilized in the past ten years in civil engineering applications for the simulation and prediction of the different physical phenomena and has proven its capabilities in the different fields. The present study aims towards introducing the use of ANN technique to model and predict the impact of the existence of submerged aquatic weeds on the hydraulic performance of open channels. Specifically the current paper investigates utilizing the ANN technique in developing a simulation and prediction model for the flow behavior in an open channel experiment that simulates the existence of submerged weeds as branched flexible elements. This experiment was considered as an example for implementing the same methodology and technique in a real open channel system. The results of current manuscript showed that ANN technique was very successful in simulating the flow behavior of the pre-mentioned open channel experiment with the existence of the submerged weeds. In addition, the developed ANN models were capable of predicting the open channel flow behavior in all the submerged weeds' cases that were considered in the ANN development process.

Numerical simulation of Hydrodynamics and water properties in the Yellow Sea. I. Climatological inter-annual variability

  • Kim, Chang-S.;Lim, Hak-Soo;Yoon, Jong-Joo;Chu, Peter-C.
    • Journal of the korean society of oceanography
    • /
    • v.39 no.1
    • /
    • pp.72-95
    • /
    • 2004
  • The Yellow Sea is characterized by relatively shallow water depth, varying range of tidal action and very complex coastal geometry such as islands, bays, peninsulas, tidal flats, shoals etc. The dynamic system is controlled by tides, regional winds, river discharge, and interaction with the Kuroshio. The circulation, water mass properties and their variability in the Yellow Sea are very complicated and still far from clear understanding. In this study, an effort to improve our understanding the dynamic feature of the Yellow Sea system was conducted using numerical simulation with the ROMS model, applying climatologic forcing such as winds, heat flux and fresh water precipitation. The inter-annual variability of general circulation and thermohaline structure throughout the year has been obtained, which has been compared with observational data sets. The simulated horizontal distribution and vertical cross-sectional structures of temperature and salinity show a good agreement with the observational data indicating significantly the water masses such as Yellow Sea Warm Water, Yellow Sea Bottom Cold Water, Changjiang River Diluted Water and other sporadically observed coastal waters around the Yellow Sea. The tidal effects on circulation and dynamic features such as coastal tidal fronts and coastal mixing are predominant in the Yellow Sea. Hence the tidal effects on those dynamic features are dealt in the accompanying paper (Kim et at., 2004). The ROMS model adopts curvilinear grid with horizontal resolution of 35 km and 20 vertical grid spacing confirming to relatively realistic bottom topography. The model was initialized with the LEVITUS climatologic data and forced by the monthly mean air-sea fluxes of momentum, heat and fresh water derived from COADS. On the open boundaries, climatological temperature and salinity are nudged every 20 days for data assimilation to stabilize the modeling implementation. This study demonstrates a Yellow Sea version of Atlantic Basin experiment conducted by Haidvogel et al. (2000) experiment that the ROMS simulates the dynamic variability of temperature, salinity, and velocity fields in the ocean. However the present study has been improved to deal with the large river system, open boundary nudging process and further with combination of the tidal forcing that is a significant feature in the Yellow Sea.

Physical Modeling of Process Parameters for Aluminum-Foam Generation (물리적 모델링을 이용한 알루미늄 발포공정 영향 인자 해석)

  • 옥성민;문영훈
    • Transactions of Materials Processing
    • /
    • v.10 no.7
    • /
    • pp.558-564
    • /
    • 2001
  • An experimental modeling is applied to investigate the formation of forms in molten aluminum By using a specially designed equipment, the effect of process variables, such as the shape of stirrer, stirring velocity and fluid viscosity, on the formation of foams were studied in the glycerine added water. Bubbles formed in water had various diameter from 1 to 10 mm and the number of bubbles was 0 to 20/$cm^2$. It turned out that among various variables the stirring velocity and fluid viscosity played important roles on the formation of bubbles. The results obtained from the model experiment were preyed to be convincible also in the real aluminum foam.

  • PDF

Similarity rule of Seepage failure by Centrifuge model test (원심모형시험기를 이용한 사면의 침투 및 파괴에 관한 상사법칙의 검토)

  • Kim, Jae-Young;Jun, Tohda
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.313-318
    • /
    • 2004
  • When plan breakdown by permeation of fill dam, bank by original decision scale model test of sound, original decision scale model test of sound that destroy having used water was carried out. And original decision scale model test of sound that use viscous fluid is carried out, but doubt remains in experiment result in state that verification of law of similarity is not achieved. In this study, verified according to Modeling of Models' method effecting law of similarity to use n ship horoscope solution of water.

  • PDF

Design Modification of a Thermal Storage Tank of Natural-Circulation Solar Water Heater for a Pressurized System (자연순환형 태양열 온수기 축열조의 압력식 설계 개조)

  • Boo, Joon-Hong;Jung, Eui-Guk
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.45-54
    • /
    • 2007
  • For a conventional natural-circulation type solar water heater, the pressure head is limited by the height between the storage tank and hot water tap. Therefore, it is difficult to provide sufficient hot water flow rate for general usage. This study deals with a design modification of the storage tank to utilize the tap-water pressure to increase hot-water supply Based on fluid dynamic and heat transfer theories, a series of modeling and simulation is conducted to achieve practical design requirements. An experimental setup is built and tested and the results are compared with theoretical simulation model. The storage tank capacity is 240 l and the outer diameter of piping was 15 mm. Number of tube turns tested are 5, 10, and 15. Starting with initial storage tank temperature of $80^{\circ}C$, the temperature variation of the supply hot water is investigated against time, while maintaining minimum flow rate of 10 1/min. Typical results show that the hot water supply of minimum $30^{\circ}C$ can be maintained for 34 min with tap-water supply pressure of 2.5 atm, The relative errors between modeling and experiments coincide well within 10% in most cases.

Restoration of the Stream Runoff by the Physical Deterministic Modeling and Formulation of Water Balance for the Catchment of Byungchun River in Chungcheong Province in Korea (물리 결정 모델링에 의한 충청도 병천천 유역의 하천 유출량 복원과 물 수지 수립)

  • KIM, Man-Kyu
    • Journal of The Geomorphological Association of Korea
    • /
    • v.15 no.2
    • /
    • pp.37-53
    • /
    • 2008
  • This study has developed a water balance model for the catchment of Byungchun river using a BROOK90 4.4e physical deterministic water balance model with the long-term meterological data and stream run off data obtained from the basin of Byungchun river in Korea. It is intended that the validation model with calibrated model fitting parameter can build a long-term water balance plan for a period when meterological data are available but stream runoff data are not. Results of this study have satisfied the first expectation as an experiment for water balance modeling since measured stream runoff data have turned out to be very similar to simulated stream runoff data. Through the confirmation of model fitting parameters and validated simulation, water balance for the period of 1998 to 2006 has been restored. Unless the conditions of geomophology, vegetation, soil and land use change, meterological data alone can produce various hydrometeorological data related to stream runoff amount, soil water amount, and evapotranspiration. This study opens up a new horizon in restoring water balance in the past as well planning water balance in the present. The obtained results from this study are expected to be used in predicting future water balance in the wake of the changes in climate and vegetation in Korea.

Preliminary Simulation Analysis of the LASGIT Experiment (방사성 폐기물의 지중저장을 위한 스웨덴 LASGIT 실험의 예비적인 시뮬레이션 분석)

  • Park, Chan-Hee;Walsh, Robert
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.197.2-197.2
    • /
    • 2011
  • Preliminary analysis on the modeling conditions and the simulation results is conducted only to evaluate the correctness of the simulation configuration further to apply for the LASGIT project. Except for the unrealistic modeling conditions for the relations of capillary pressure and relative permeability against water saturation used previously, the simulation results successfully demonstrate Helium propagation typical for two-phase flow. Further elaborated simulation with more realistic parameters should complete the weak points of the preliminary work.

  • PDF

An Empirical Study on the Characteristics of Pore Water Pressure Reaction in Colluvium Model (붕적층내의 간극수압 반응에 관한 실험적 연구)

  • 정두영;최길렬
    • Geotechnical Engineering
    • /
    • v.8 no.2
    • /
    • pp.59-70
    • /
    • 1992
  • This work is to study experimentally the measurment of pore air pressure according to rainfall in colluvium model and the characteristics of pore water pressure according to increasement of artesian ground water head. After modeling a geological feature of the Tertiary formation, the experiment was performed about sixty times on three kinds of soil. This experimental results showed the variation of pore water and pore air pressures with time, the change of void ratio and appling pressure head in the nonsaturated soil. It can be also expressed by the final pore water and the air reaction ratios and then formularizing the relationship between the permeability coefficient and the void ratio. In the results of this experiment, the patterns of the pore water pressure reaction are classified by the step-type and the wave-type, and the time-lag to reach final point of pore water pressure is in order sand, sandy silt and clayey sand.

  • PDF

Agricultural Soil Carbon Management Considering Water Environment (수질 환경을 고려한 농경지 토양 탄소 관리 방안)

  • Lee, Kyoungsook;Yoon, Kwangsik;Choi, Dongho;Jung, Jaewoon;Choi, Woojung;Lim, Sangsun
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.1
    • /
    • pp.1-17
    • /
    • 2013
  • Carbon sequestration on soil is one of the counter measurements against climate change in agricultural sector. Increasing incorporation of organic fertilizer would increase soil organic carbon (SOC) but it could bring high potential of nutrient losses which would result in water quality degradation. In this paper, literature review on soil organic carbon behavior according to agricultural management is presented. The results of field experiment to identify the effect of organic and commercial fertilizer applications on SOC and runoff water quality were also presented. Field experiment confirmed increased SOC and nutrient concentrations in runoff water as application rate of organic fertilizer increase. The potential use of simulation model to develop best agricultural management practice considering carbon sequestration and water quality conservation at the same time is discussed and monitoring and modeling strategies are also suggested to achieve the goal.

Hourly SWAT Watershed Modeling for Analyzing Reduction Effect of Nonpoint Source Pollution Discharge Loads (비점원오염 저감효과 분석을 위한 시단위 SWAT 유역 모델링)

  • Jang, Sun Sook;Ahn, So Ra;Choi, Joong Dae;Kim, Seong Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.1
    • /
    • pp.89-97
    • /
    • 2015
  • This study is to assess the effect of non-point source pollution discharge loads between tillage and no-tillage applications for upland crop areas using SWAT (Soil and Water Assessment Tool) watershed modeling. For Byulmi-cheon small rural catchment ($1.17km^2$) located in upstream of Gyeongan-cheon watershed, the rainfall, discharge and stream water quality have been monitored in the catchment outlet since 2011. The SWAT model was calibrated and validated in hourly basis using 19 rainfall events during 2011-2013. The average Nash-Sutcliffe model efficiency and $R^2$ (determination coefficient) for streamflow were 0.67 and 0.79 respectively. Using the 10 % surface runoff reduction from experiment results for no-tillage condition in field plots of 3 % and 8 % slopes under sesami cultivation, the soil saturated hydraulic conductivity for upland crop areas was adjusted from 0.001 mm/hr to 0.0025 mm/hr in average. Under the condition, the catchment sediment, T-N (total nitrogen, TN), and T-P (total phosphorus, TP) discharge loads were reduced by 6.9 %, 7.4 %, and 7.7 % respectively.