• Title/Summary/Keyword: Water model experiment

Search Result 1,018, Processing Time 0.026 seconds

The Behavior of Undrained Pore Water Pressure in Normally Consolidated and Saturated Clay(II) - Visco Elastic Analysis Model - (포화된 정규압밀 점성토에서 비배수 공극수압의 거동(II) - 점탄성 해석 모델 -)

  • 임성훈
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.4
    • /
    • pp.137-143
    • /
    • 2003
  • The initial condition of $\Delta \sigma_3 \;=\; \Delta u$ is used for analyzing the time dependent behavior of ground. This is based on the concept that the coefficient of pore water B is the unity on the condition of saturation. but some measured consolidation data in the field showed that the pore water pressure was not dissipated as time elapsed but it was maintained constant value or it's dissipation rate was slower than that of the predicted. and so the measured data of pore water pressure was not consistent with that of settlement. In this study, the rheological model for the pore water pressure behavior on undrained condition was induced and compared with the experiment data of the literature. The result showed that the suggested model was consistent well with the result of experiment, but the suggested model could not explain the effect of the decrease of void ratio according to consolidation.

Characterization of gas-water flow in tight sandstone based on authentic sandstone micro-model

  • Liu, Yuqiao;Lyu, Qiqi;Luo, Shunshe
    • Geosystem Engineering
    • /
    • v.21 no.6
    • /
    • pp.318-325
    • /
    • 2018
  • Eight tight sandstone reservoir samples from $He_8$ and $Shan_1$ Formations of the Sulige Gas field were selected to perform gas-water micro-displacement experiment based on authentic sandstone micro-model. The gas pressure-relief experiment was proposed for the first time to simulate the pressure change and gas-water percolation characteristics in the process of gas exploitation. The experiment results show that: (1) In the process of gas accumulation, the gas preferentially flows into the well-connected pores and throats with large radius, but rarely flows into the area without pores and throats. (2) Under sufficient gas drive, the water in pores and throats usually exists in the forms of 'thin water film', 'thick water film', and 'water column', but under insufficient gas drive, gas fails to flow into new pathways in time, so that the reservoirs with large pores and throats are high in water cut. (3) Under the same water saturation, the reservoirs with better petrophysical properties has higher gas recovery factor within unit time. Under the same petrophysical conditions, the reservoirs with lower water saturation show higher gas recovery factor within unit time. The higher the permeability, the stronger the liquid carrying capacity of reservoirs.

Application of Hydrological Monitoring System for Urban Flood Disaster Prevention (도시홍수방재를 위한 수문모니터링시스템의 적용)

  • Seo, Kyu-Woo;Na, Hyun-Woo;Kim, Nam-Gil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1209-1213
    • /
    • 2005
  • It reflects well feature of slope that is characteristic of city river basin of Pusan local. Process various hydrological datas and basin details datas which is collected through basin basis data. weather satellite equipment(EMS-DEU) and automatic water level equipment(AWS-DEU) and use as basin input data of ILLUDAS model, SWMM model and HEC-HMS model In order to examine outflow feature of experiment basin and then use in reservoir design of experiment basin through calibration and verification about HEC-HMS model. Inserted design rainfall for 30 years that is design criteria of creek into HEC-HMS model and then calculated design floods according to change aspect of the impermeable rate. Capacity of reservoir was determined on the outflow mass curve. Designed imagination reservoir(volume $54,000m^3$) at last outlet upper stream of experiment basin, after designing reservoir. It could be confirmed that the peak flow was reduced resulting from examining outflow aspect. Designing reservoir must decrease outflow of urban areas.

  • PDF

MODELING OF A BUOYANCY-DRIVEN FLOW EXPERIMENT IN PRESSURIZED WATER REACTORS USING CFD-METHODS

  • Hohne, Thomas;Kliem, Soren
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.327-336
    • /
    • 2007
  • The influence of density differences on the mixing of the primary loop inventory and the Emergency Core Cooling (ECC) water in the downcomer of a Pressurised Water Reactor (PWR) was analyzed at the ROssendorf COolant Mixing (ROCOM) test facility. ROCOM is a 1:5 scaled model of a German PWR, and has been designed for coolant mixing studies. It is equipped with advanced instrumentation, which delivers high-resolution information for temperature or boron concentration fields. This paper presents a ROCOM experiment in which water with higher density was injected into a cold leg of the reactor model. Wire-mesh sensors measuring the tracer concentration were installed in the cold leg and upper and lower part of the downcomer. The experiment was run with 5% of the design flow rate in one loop and 10% density difference between the ECC and loop water especially for the validation of the Computational Fluid Dynamics (CFD) software ANSYS CFX. A mesh with two million control volumes was used for the calculations. The effects of turbulence on the mean flow were modelled with a Reynolds stress turbulence model. The results of the experiment and of the numerical calculations show that mixing is dominated by buoyancy effects: At higher mass flow rates (close to nominal conditions) the injected slug propagates in the circumferential direction around the core barrel. Buoyancy effects reduce this circumferential propagation. Therefore, density effects play an important role during natural convection with ECC injection in PWRs. ANSYS CFX was able to predict the observed flow patterns and mixing phenomena quite well.

Development of Artificial Neural Network Model for Simulating the Flow Behavior in Open Channel Infested by Submerged Aquatic Weeds

  • Abdeen Mostafa A. M.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1576-1589
    • /
    • 2006
  • Most of surface water ways in Egypt suffer from the infestation of aquatic weeds especially submerged ones which cause lots of problems for the open channels and the water structures such as increasing water losses, obstructing the water flow, and reducing the efficiency of the water structures. Accurate simulation of the water flow behavior in such channels is very essential for water distribution decision makers. Artificial Neural Network (ANN) has been widely utilized in the past ten years in civil engineering applications for the simulation and prediction of the different physical phenomena and has proven its capabilities in the different fields. The present study aims towards introducing the use of ANN technique to model and predict the impact of the existence of submerged aquatic weeds on the hydraulic performance of open channels. Specifically the current paper investigates utilizing the ANN technique in developing a simulation and prediction model for the flow behavior in an open channel experiment that simulates the existence of submerged weeds as branched flexible elements. This experiment was considered as an example for implementing the same methodology and technique in a real open channel system. The results of current manuscript showed that ANN technique was very successful in simulating the flow behavior of the pre-mentioned open channel experiment with the existence of the submerged weeds. In addition, the developed ANN models were capable of predicting the open channel flow behavior in all the submerged weeds' cases that were considered in the ANN development process.

Parametric Study on Oscillating Water Column Wave Energy Converter Applicable to Breakwater

  • Park, Sewan;Nam, Bo Woo;Kim, Kyong-Hwan;Hong, Keyyong
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.4 no.2
    • /
    • pp.66-77
    • /
    • 2018
  • This paper presents a parametric study on an oscillating water column (OWC) wave energy converter (WEC). This OWC has been planned for installation in the breakwaters on isolated islands located away from the mainland. Both a numerical analysis and a model experiment are utilized for determining a proper conceptual design for this purpose. Various design parameters, including the configurations and dimensions, are evaluated through the numerical analysis, which is based on a potential flow theory, and several design concepts are then selected as candidates. The model experiment using a 2D wave flume is conducted to evaluate the effects of the design parameters and compare the performances of the candidates. Based on the overall results of the numerical analysis and model experiment, a conceptual design of the OWC WEC applicable to a breakwater is selected.

Estimation of the Water Surface Slope by the Flood Discharge with River Bend Curvature (하천 만곡률과 홍수량에 따른 수면경사도 산정)

  • Choi, Han-Kyu;Lee, Mun-Hee;Baek, Hyo-Sun
    • Journal of Industrial Technology
    • /
    • v.26 no.A
    • /
    • pp.129-137
    • /
    • 2006
  • In this research, we made a one and two-dimensional analysis of numerical data collected from the bend curvature of a bended river section. According to the result from the numerical analysis, the inflow & output angle caused a water level deviation which increased with an increase of the flood discharge. From the water level deviation of our two-dimensional numerical model, we obtained the maximum slope of 6,67% when the inflow and output angle was 105 degrees and the flood discharge was 500 CMS. As for the right side, the differences with the one-dimensional numerical model were reduced when the angle was more than $90^{\circ}$. As for the left side the differences were reduced when the angle was more than $105^{\circ}$. For a river with more than 90 degrees bend curvature, a hydraulic experiment would be more appropriate than a numerical analysis.

  • PDF

The Study on Hydraulic Model Experiment of Discharge Channel and Spillway (여수토 방수로의 수리모형검시에 관한 연구)

  • 김시원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.8 no.2
    • /
    • pp.1124-1140
    • /
    • 1966
  • 'This hydraulic experiment have been practised Juk an Reservoir spillway and discharge 'channel which the province Kyong Buk was constructed and designed U. hook, for seizing all state of hydraulic. As result of the experimellt planning and making the model test, it has gained the necessary data at the amendment, projection of the most rational and economical result. 1. Project (1) Experiment project....1/30 of the discharge (2) project flood....0.01945 $m^3$/sec (rapidly) 2. Design Experiment It were sighted the water level for the nine point (L. & R. sides of No. O, L. & R. of No.1, L. side of NO.2, NO.3, No. 4 and NO.5), but it appeared each other that the lowest water level was 0.63 m at spillway (No.5) and the highest water level 0.735m less than planning water level O.75 m at No. 0. It was regarded as the phenomena appearing the difference from the calculation of the rational formular and coefficient of discharge. 3. Experiment examine E. ${\circled1}$ As a table (2) it had not a difference in comparision with design and was some lower value than design experiment's. E ..${\circled2}$) !twas same table (3) in a consequence of Experiment contracted Rocky cutting. E.${\circled3}$. ${\circled4}$ It was done amend.ment Experiment by elevating G.H. in only control point, but was not sure result as a table (2)(3)(4), and so it was changed largely in ${\circled5}$ Experiment. E. ${\circled5}$ Increasing water level was understanded to be proportion to $V^2$ in consideration of centrifugal force in the curve part and showed velocity contracting in curve the effect order's being regular in consequence of 1/6 sloped extending G.H. attached from 5 No. 0 to 1. 50 m, to S No. 0+5m. (S; discharge channel number).

  • PDF

A Study on the Analysis and the Improvement of Land and Sea Breeze Model Experiment suggested to 2009 Revised Elementary Science Curriculum (2009 개정 교육과정 초등과학에서 제시된 해륙풍 모형실험 분석 및 개선 방안)

  • Kang, Houn Tae;Lee, Gyuho;Noh, Suk Goo
    • Journal of Korean Elementary Science Education
    • /
    • v.36 no.1
    • /
    • pp.1-15
    • /
    • 2017
  • The purpose of this study is to analyze the problems of land and sea breeze model experiment that has presented in $5^{th}$ grade curriculum in chapter "Weather and our lives" and makes better model simulation so that learners can have better and more effective way to study it. To survey the opinions from dedicated teachers about land and sea breeze model experiment, we produced the survey through interview with science exclusive teacher from M elementary school. An elementary science education expert, 3 men of science EdD modified and complemented survey and started Delphi survey to 12 science teachers who have career teaching more than 3 years. The problems found in this survey were 'one heat bulb, short heating time, small temperature difference of water and sand, lack of class time, empty space between sand and water, back of transparent boxes, little amount of scent and the location of the it' etc. But the most of all, it is hard to see the successful result of the experiment. Based on these kinds of investigations, and lots of trial and error, redesigned the new model experiment that has the most similarity to the real one and high probability of success. According to this, it was able to see the smoke forms horizontal movement along the sand and the smoke goes in one circulation cycle. through this experiment, we made a conclusion that although those scientific experiments in textbook were developed through lots of considerations of expert, to consider the aspect of consumer, it needs to reach the educational agreement about simulation experiment so that It can lead to successful experiment and high quality education.

A Fundamental Study on the Effect of Ocean Fertilization by Deep Sea Water (해양심층수에 의한 해역 비옥화 효과에 관한 기초 연구)

  • Shiokari, Megumi;Tabeta, Shigeru;Kato, Takayoshi
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.3
    • /
    • pp.198-207
    • /
    • 2012
  • In this study, we investigated the effect of ocean fertilization by deep sea water, using an ecosystem model which contains not only phytoplankton but also zooplankton. The model is based on NEMURO which consists of eleven compartments - two species of phytoplankton, three species of zooplankton, $NO_3$, $NH_4$, $Si(OH)_4$, particulate organic nitrogen, dissolved organic nitrogen and particulate silicon. We introduced nitrogen cell quota in the both species of phytoplankton, and silicon cell quota in the large phytoplankton in addition to the eleven compartments of NEMURO. We made the experiment at Izu Oshima Island in order to investigate the effect of ocean fertilization. In this experiment, we could not find clear differences between the cases with and without deep sea water. We investigated the causes of the experiment results by the model simulations. One of the causes was high concentrations of nutrients in surface seawater used in the experiment. Another was that the increase of total concentration of inorganic nitrogen does not necessarily accelerate the photosynthetic rate because inorganic nitrogen uptake rate is related to the ratio of $NO_3$ to $NH_4$. Because the model can represent the results of the experiment, we investigated the effect of ocean fertilization by deep sea water using this model. We found that the effect of ocean fertilization hardly appeared when the interval of the addition of deep sea water was too short, or the amount of deep sea water was too much. It is supposed that if the addition of deep sea water is too frequent or too much, the dilution of plankton's concentrations will exceed the effect of promoting phytoplankton's photosynthesis.