• 제목/요약/키워드: Water model experiment

검색결과 1,018건 처리시간 0.026초

포화된 정규압밀 점성토에서 비배수 공극수압의 거동(II) - 점탄성 해석 모델 - (The Behavior of Undrained Pore Water Pressure in Normally Consolidated and Saturated Clay(II) - Visco Elastic Analysis Model -)

  • 임성훈
    • 한국농공학회지
    • /
    • 제45권4호
    • /
    • pp.137-143
    • /
    • 2003
  • The initial condition of $\Delta \sigma_3 \;=\; \Delta u$ is used for analyzing the time dependent behavior of ground. This is based on the concept that the coefficient of pore water B is the unity on the condition of saturation. but some measured consolidation data in the field showed that the pore water pressure was not dissipated as time elapsed but it was maintained constant value or it's dissipation rate was slower than that of the predicted. and so the measured data of pore water pressure was not consistent with that of settlement. In this study, the rheological model for the pore water pressure behavior on undrained condition was induced and compared with the experiment data of the literature. The result showed that the suggested model was consistent well with the result of experiment, but the suggested model could not explain the effect of the decrease of void ratio according to consolidation.

Characterization of gas-water flow in tight sandstone based on authentic sandstone micro-model

  • Liu, Yuqiao;Lyu, Qiqi;Luo, Shunshe
    • Geosystem Engineering
    • /
    • 제21권6호
    • /
    • pp.318-325
    • /
    • 2018
  • Eight tight sandstone reservoir samples from $He_8$ and $Shan_1$ Formations of the Sulige Gas field were selected to perform gas-water micro-displacement experiment based on authentic sandstone micro-model. The gas pressure-relief experiment was proposed for the first time to simulate the pressure change and gas-water percolation characteristics in the process of gas exploitation. The experiment results show that: (1) In the process of gas accumulation, the gas preferentially flows into the well-connected pores and throats with large radius, but rarely flows into the area without pores and throats. (2) Under sufficient gas drive, the water in pores and throats usually exists in the forms of 'thin water film', 'thick water film', and 'water column', but under insufficient gas drive, gas fails to flow into new pathways in time, so that the reservoirs with large pores and throats are high in water cut. (3) Under the same water saturation, the reservoirs with better petrophysical properties has higher gas recovery factor within unit time. Under the same petrophysical conditions, the reservoirs with lower water saturation show higher gas recovery factor within unit time. The higher the permeability, the stronger the liquid carrying capacity of reservoirs.

도시홍수방재를 위한 수문모니터링시스템의 적용 (Application of Hydrological Monitoring System for Urban Flood Disaster Prevention)

  • 서규우;나현우;김남길
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2005년도 학술발표회 논문집
    • /
    • pp.1209-1213
    • /
    • 2005
  • It reflects well feature of slope that is characteristic of city river basin of Pusan local. Process various hydrological datas and basin details datas which is collected through basin basis data. weather satellite equipment(EMS-DEU) and automatic water level equipment(AWS-DEU) and use as basin input data of ILLUDAS model, SWMM model and HEC-HMS model In order to examine outflow feature of experiment basin and then use in reservoir design of experiment basin through calibration and verification about HEC-HMS model. Inserted design rainfall for 30 years that is design criteria of creek into HEC-HMS model and then calculated design floods according to change aspect of the impermeable rate. Capacity of reservoir was determined on the outflow mass curve. Designed imagination reservoir(volume $54,000m^3$) at last outlet upper stream of experiment basin, after designing reservoir. It could be confirmed that the peak flow was reduced resulting from examining outflow aspect. Designing reservoir must decrease outflow of urban areas.

  • PDF

MODELING OF A BUOYANCY-DRIVEN FLOW EXPERIMENT IN PRESSURIZED WATER REACTORS USING CFD-METHODS

  • Hohne, Thomas;Kliem, Soren
    • Nuclear Engineering and Technology
    • /
    • 제39권4호
    • /
    • pp.327-336
    • /
    • 2007
  • The influence of density differences on the mixing of the primary loop inventory and the Emergency Core Cooling (ECC) water in the downcomer of a Pressurised Water Reactor (PWR) was analyzed at the ROssendorf COolant Mixing (ROCOM) test facility. ROCOM is a 1:5 scaled model of a German PWR, and has been designed for coolant mixing studies. It is equipped with advanced instrumentation, which delivers high-resolution information for temperature or boron concentration fields. This paper presents a ROCOM experiment in which water with higher density was injected into a cold leg of the reactor model. Wire-mesh sensors measuring the tracer concentration were installed in the cold leg and upper and lower part of the downcomer. The experiment was run with 5% of the design flow rate in one loop and 10% density difference between the ECC and loop water especially for the validation of the Computational Fluid Dynamics (CFD) software ANSYS CFX. A mesh with two million control volumes was used for the calculations. The effects of turbulence on the mean flow were modelled with a Reynolds stress turbulence model. The results of the experiment and of the numerical calculations show that mixing is dominated by buoyancy effects: At higher mass flow rates (close to nominal conditions) the injected slug propagates in the circumferential direction around the core barrel. Buoyancy effects reduce this circumferential propagation. Therefore, density effects play an important role during natural convection with ECC injection in PWRs. ANSYS CFX was able to predict the observed flow patterns and mixing phenomena quite well.

Development of Artificial Neural Network Model for Simulating the Flow Behavior in Open Channel Infested by Submerged Aquatic Weeds

  • Abdeen Mostafa A. M.
    • Journal of Mechanical Science and Technology
    • /
    • 제20권10호
    • /
    • pp.1576-1589
    • /
    • 2006
  • Most of surface water ways in Egypt suffer from the infestation of aquatic weeds especially submerged ones which cause lots of problems for the open channels and the water structures such as increasing water losses, obstructing the water flow, and reducing the efficiency of the water structures. Accurate simulation of the water flow behavior in such channels is very essential for water distribution decision makers. Artificial Neural Network (ANN) has been widely utilized in the past ten years in civil engineering applications for the simulation and prediction of the different physical phenomena and has proven its capabilities in the different fields. The present study aims towards introducing the use of ANN technique to model and predict the impact of the existence of submerged aquatic weeds on the hydraulic performance of open channels. Specifically the current paper investigates utilizing the ANN technique in developing a simulation and prediction model for the flow behavior in an open channel experiment that simulates the existence of submerged weeds as branched flexible elements. This experiment was considered as an example for implementing the same methodology and technique in a real open channel system. The results of current manuscript showed that ANN technique was very successful in simulating the flow behavior of the pre-mentioned open channel experiment with the existence of the submerged weeds. In addition, the developed ANN models were capable of predicting the open channel flow behavior in all the submerged weeds' cases that were considered in the ANN development process.

Parametric Study on Oscillating Water Column Wave Energy Converter Applicable to Breakwater

  • Park, Sewan;Nam, Bo Woo;Kim, Kyong-Hwan;Hong, Keyyong
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제4권2호
    • /
    • pp.66-77
    • /
    • 2018
  • This paper presents a parametric study on an oscillating water column (OWC) wave energy converter (WEC). This OWC has been planned for installation in the breakwaters on isolated islands located away from the mainland. Both a numerical analysis and a model experiment are utilized for determining a proper conceptual design for this purpose. Various design parameters, including the configurations and dimensions, are evaluated through the numerical analysis, which is based on a potential flow theory, and several design concepts are then selected as candidates. The model experiment using a 2D wave flume is conducted to evaluate the effects of the design parameters and compare the performances of the candidates. Based on the overall results of the numerical analysis and model experiment, a conceptual design of the OWC WEC applicable to a breakwater is selected.

하천 만곡률과 홍수량에 따른 수면경사도 산정 (Estimation of the Water Surface Slope by the Flood Discharge with River Bend Curvature)

  • 최한규;이문희;백효선
    • 산업기술연구
    • /
    • 제26권A호
    • /
    • pp.129-137
    • /
    • 2006
  • In this research, we made a one and two-dimensional analysis of numerical data collected from the bend curvature of a bended river section. According to the result from the numerical analysis, the inflow & output angle caused a water level deviation which increased with an increase of the flood discharge. From the water level deviation of our two-dimensional numerical model, we obtained the maximum slope of 6,67% when the inflow and output angle was 105 degrees and the flood discharge was 500 CMS. As for the right side, the differences with the one-dimensional numerical model were reduced when the angle was more than $90^{\circ}$. As for the left side the differences were reduced when the angle was more than $105^{\circ}$. For a river with more than 90 degrees bend curvature, a hydraulic experiment would be more appropriate than a numerical analysis.

  • PDF

여수토 방수로의 수리모형검시에 관한 연구 (The Study on Hydraulic Model Experiment of Discharge Channel and Spillway)

  • 김시원
    • 한국농공학회지
    • /
    • 제8권2호
    • /
    • pp.1124-1140
    • /
    • 1966
  • 'This hydraulic experiment have been practised Juk an Reservoir spillway and discharge 'channel which the province Kyong Buk was constructed and designed U. hook, for seizing all state of hydraulic. As result of the experimellt planning and making the model test, it has gained the necessary data at the amendment, projection of the most rational and economical result. 1. Project (1) Experiment project....1/30 of the discharge (2) project flood....0.01945 $m^3$/sec (rapidly) 2. Design Experiment It were sighted the water level for the nine point (L. & R. sides of No. O, L. & R. of No.1, L. side of NO.2, NO.3, No. 4 and NO.5), but it appeared each other that the lowest water level was 0.63 m at spillway (No.5) and the highest water level 0.735m less than planning water level O.75 m at No. 0. It was regarded as the phenomena appearing the difference from the calculation of the rational formular and coefficient of discharge. 3. Experiment examine E. ${\circled1}$ As a table (2) it had not a difference in comparision with design and was some lower value than design experiment's. E ..${\circled2}$) !twas same table (3) in a consequence of Experiment contracted Rocky cutting. E.${\circled3}$. ${\circled4}$ It was done amend.ment Experiment by elevating G.H. in only control point, but was not sure result as a table (2)(3)(4), and so it was changed largely in ${\circled5}$ Experiment. E. ${\circled5}$ Increasing water level was understanded to be proportion to $V^2$ in consideration of centrifugal force in the curve part and showed velocity contracting in curve the effect order's being regular in consequence of 1/6 sloped extending G.H. attached from 5 No. 0 to 1. 50 m, to S No. 0+5m. (S; discharge channel number).

  • PDF

2009 개정 교육과정 초등과학에서 제시된 해륙풍 모형실험 분석 및 개선 방안 (A Study on the Analysis and the Improvement of Land and Sea Breeze Model Experiment suggested to 2009 Revised Elementary Science Curriculum)

  • 강헌태;이규호;노석구
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제36권1호
    • /
    • pp.1-15
    • /
    • 2017
  • The purpose of this study is to analyze the problems of land and sea breeze model experiment that has presented in $5^{th}$ grade curriculum in chapter "Weather and our lives" and makes better model simulation so that learners can have better and more effective way to study it. To survey the opinions from dedicated teachers about land and sea breeze model experiment, we produced the survey through interview with science exclusive teacher from M elementary school. An elementary science education expert, 3 men of science EdD modified and complemented survey and started Delphi survey to 12 science teachers who have career teaching more than 3 years. The problems found in this survey were 'one heat bulb, short heating time, small temperature difference of water and sand, lack of class time, empty space between sand and water, back of transparent boxes, little amount of scent and the location of the it' etc. But the most of all, it is hard to see the successful result of the experiment. Based on these kinds of investigations, and lots of trial and error, redesigned the new model experiment that has the most similarity to the real one and high probability of success. According to this, it was able to see the smoke forms horizontal movement along the sand and the smoke goes in one circulation cycle. through this experiment, we made a conclusion that although those scientific experiments in textbook were developed through lots of considerations of expert, to consider the aspect of consumer, it needs to reach the educational agreement about simulation experiment so that It can lead to successful experiment and high quality education.

해양심층수에 의한 해역 비옥화 효과에 관한 기초 연구 (A Fundamental Study on the Effect of Ocean Fertilization by Deep Sea Water)

  • 시오카리 메구미;다베타 시게루;가토 타카요시
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제15권3호
    • /
    • pp.198-207
    • /
    • 2012
  • 본 연구에서 식물플랑크톤 뿐 아니라 동물플랑크톤을 포함하는 생태계 모델을 이용하여 해양 심층수의 해역 비옥화의 효과를 검증하였다. 모델은 2종의 식물플랑크톤, 3종의 동물플랑크톤, 질산염, 암모늄염, 규산염, 입자성 유기질소, 용존 유기질소, 입자성 규소 총 11개 요소로 구성된 NEMURO에 기초하고 있다. NEMURO의 11개 요소 외에도 두 종의 식물플랑크톤내 질소 셀 쿼터와 대형 식물플랑크톤내 규산염 셀 쿼터를 추가하였다. 해역 비옥화 효과를 조사하기 위해서 이즈 오시마 섬에서 실험을 실시하였지만, 본 실험에서 심층수의 유무에 의한 명확한 차이를 확인할 수 없었다. 이 실험 결과의 원인들을 모델 시뮬레이션에 의해 조사하였으며, 그 원인의 하나는 실험에 사용된 표층수의 높은 영양염 농도이다. 다른 원인은 무기질소 섭취율이 $NH_4$에 대한 $NO_3$의 비율에 관련되어 있으므로 무기질소의 총 농도의 증가가 광합성 속도를 반드시 증진시키지 않는다는 것이다. 이 모델로 실험 결과들을 재현할 수 있었기 때문에 우리는 이 모델을 이용하여 해양 심층수에 의한 해역 비옥화의 효과를 검증하였다. 해양 심층수의 공급 간격이 너무 짧거나 해양 심층수의 양이 너무 많을 때 해역 비옥화 효과는 나타나기 어려운 것으로 밝혀졌다. 해양 심층수의 첨가가 너무 비번하거나 너무 많이 첨가하면 플랑크톤 농도의 희석이 식물플랑크톤의 광합성 증진 효과를 초과해 버린 것으로 추측된다.