• Title/Summary/Keyword: Water impact

Search Result 3,248, Processing Time 0.026 seconds

Natural Baseline Groundwater Quality in Shingwang-myeon and Heunghae-eup, Pohang, Korea (포항시 신광면 및 흥해읍 일대 지하수의 배경수질 연구)

  • Lee, Hyun A;Lee, Hyunjoo;Kwon, Eunhye;Park, Jonghoon;Woo, Nam C.
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.469-483
    • /
    • 2020
  • The results of long-term groundwater level and quality monitoring can be used not only as the basic data for evaluating the impact of various disasters including climate change and establishing responses, but also as key data for predicting and managing geological disasters such as earthquakes. Some countries use groundwater level and quality monitoring for researches to predict earthquakes and to assess the impacts of the earthquake disaster. However, a few cases in Korea report on individual groundwater quality factors (i.e., dissolved ions) observed before and after the earthquakes, being different from other countries. To establish the abnormality criteria for groundwater quality in Pohang, groundwater samples were collected and analyzed five times from 14 agricultural or private wells existing in Shingwang-myeon and Heunghae-eup. As a result of the analysis, it was found that Ca2+ was the dominant cation in Shingwang-myeon, while Na+ was the dominant cation in Heunghae-eup. The elevated NO3- concentration in Shingwang-myeon is contributed to the agricultural activity in the area. A high concentration of Fe was detected in a well on Heunghae-eup; the concentration exceeded the drinking water standard by nearly 100 times. Relatively higher dissolved ions were observed in the groundwater of Heunghae-eup, and it is considered as the result of the flow velocity difference and water-rock reaction accompanying the difference in bedrock and sediment characteristics. The groundwater of Shingwang-myeon appeared to be most affected by the weathering of granite and silicates, while that of Heunghae-eup was mainly affected by the weathering of silicates and carbonate. The background concentrations (baselines) of groundwater Shingwang-myeon and Heunghae-eup was identified through the survey; however, the continuous monitoring is required to monitor the possible changes and the repeatability of seasonal variation.

Fish Community Structure and Biodiversity of the Korean Peninsula Estuaries (한반도 하구의 어류군집 구조 및 다양성)

  • Park, Sang-Hyeon;Baek, Seung-Ho;Kim, Jeong-Hui;Kim, Dong-Hwan;Jang, Min-Ho;Won, Doo-Hee;Park, Bae-Kyung;Moon, Jeong-Suk
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.1
    • /
    • pp.35-48
    • /
    • 2022
  • Fish assemblage of total 325 of Korean peninsula estuaries were surveyed to analyze the characteristics of community structure and diversity by sea areas for three years from 2016 to 2018. The scale (stream width) of Korean estuaries were various (14~3,356 m), and 68.9% of all estuaries showed salinity of less than 2 psu. Total 149 species classified into 52 families of fish were identified, and the dominant and sub-dominant species were Tribolodon hakonensis (relative abundance, RA, 12.5%) and Mugil cephalus (RA, 9.5%), respectively. The estuary of the Korean Peninsula had different physical and chemical habitat environments depending on the sea area, and accordingly, fish community structure also showed statistically significant differences (PERMANOVA, Pseudo-F=26.69, P=0.001). In addition, the NMDS (nonmetric multidimensional scaling) results showed the patterns that indicating fish community difference by sea areas, even though low community similarity within sea area (SIMPER, 21.79~26.39%). The estuaries of east sea areas were distinguished from the others in the aspects of which, the higher importance of migratory fishes and endangered species, and that of brackish species were characterized at south sea estuaries. However, the estuaries of west sea showed higher importance of species that have a relation with freshwater (primary freshwater species, exotic species), which is the result that associating with the lower salinity of west sea estuaries because of the high ratio of closed estuaries(78.2%). The SIMPER analysis, scoring the contribution rates of species to community similarity, also showed results corresponding to the tendency of different fish community structures according to each sea area. So far, In Korea, most studies on fish communities in estuaries have been conducted in a single estuary unit, which made it difficult to understand the characteristics of estuaries at the national level, which are prerequisite for policy establishment. In present study, we are providing fish community structure characteristics of Korean estuaries in a national scale, including diversity index, habitat salinity ranges of major species, distribution of migratory species. We are expecting that our results could be utilized as baseline information for establishing management policies or further study of Korean estuaries.

A Study on the Characteristics of Ecosystem Change and Management in Urban Wetland - Focusing on the Dunchon-Dong Ecological and Scenery Conservation Area, Seoul - (도시 습지 자연생태계 변화 특성 및 관리방안 연구 - 서울시 둔촌동 생태·경관보전지역을 대상으로 -)

  • Han, Bong-Ho;Park, Seok-Cheol;Kim, Jong-Yup
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.3
    • /
    • pp.1-20
    • /
    • 2023
  • The present study has monitored the changes in the biodiversity of Dunchon-Dong ecological and landscape conservation area after the restoration of the wetland, identified and analyzed the threats to the ecosystem, and presented a management plan accordingly. In this area which was forests and rice paddies in the past, apartment reconstruction is currently underway, with some hinterland forests and wetlands remaining. When we look into the change in the floras, the total number of species was 193 in 2000 before the restoration, it decreased from 2004 to 2006, and as of 2019, it was 149, showing an increasing trend. The result of comparing the species that emerged before and after the restoration showed an increase in Cyperaceae herbs such as Carex maximowiczii and Carex dispalata growing in wetland areas within forests and Schoenoplectiella juncoides and Schoenoplectus tabernaemontani growing in areas within wetlands where shallow water is maintained. As a result of analyzing the change in the area ratio of each type of extant vegetation, the wetland native herbs formed the power at the highest ratio after the restoration. The change in the power of the wetland native herbs was on an increasing trend until 2007, after which it decreased much in 2010 and then gradually increased, showing values of 26.6% in 2000, 44.6% in 2002, 49.0% in 2005, 53.3% in 2007, 28.7% in 2010, and 37.3% in 2019. The cause of the decrease in 2010 was judged to be due to the vegetation management conducted to secure open water and remove organic matter in freshwater reservoirs. The amphibia which emerged from 2000 to 2019 was a total of 9 species including Hynobius leeshii, Bufo gargarizans, Kaloula borealis, and Rana uenoi. As a result of the changes in the emerging wild birds, the species diversity index before the restoration was 0.9922 in 2000, and the species diversity index after the restoration gradually increased to 1.2449 in 2005, 1.2467 in 2010, and 2.2631 in 2019. The amphibia and wild birds inhibiting in the Dunchon-Dong forest and wetland were judged to have increased through continuous wetland maintenance such as naturalized plant removal management, native plant maintenance, and open water securing management. For the ecosystem preservation management of the Dunchon-Dong ecological and landscape conservation area, it was suggested to minimize the impact of the Dunchon-Dong reconstruction project, reorganize the indiscriminate access roads adjacent to the wetland, and reorganize the main entrance to the wetland. For ecosystem restoration management, systematic restoration and ecological buffer planting were suggested to be carried out at the time of construction fence demolition.

Application of Nano Fe°-impregnated Biochar for the Stabilization of As-contaminated Soil (비소 오염토양의 안정화를 위한 나노 Fe° 담지 바이오차 적용 연구)

  • Choi, Yu-Lim;Angaru, Ganesh Kumar Reddy;Ahn, Hye-Young;Park, Kwang-Jin;Joo, Wan-Ho;Yang, Jae-Kyu;Chang, Yoon-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.5
    • /
    • pp.350-362
    • /
    • 2020
  • In this study, nano Fe°-impregnated biochar (INPBC) was prepared using pruning residues and one-pot synthetic method and evaluated its performance as an amendment agent for the stabilization of arsenic-contaminated soil. For the preparation of INPBC, the mixture of pruning residue and Fe (III) solution was heated to 220℃ for 3hr in a teflon-sealed autoclave followed by calcination at 600℃ under N2 atmosphere for 1hr. As-prepared INPBC was characterized using FT-IR, XRD, BET, SEM. For the stabilization test of as-prepared INPBC, As-contaminated soils (Soil-E and Soil-S) sampled from agricultural sites located respectively near E-abandoned mine and S-abandoned mine in South Korea were mixed with different of dosage of INPBC and cultivated for 4 weeks. After treatment, TCLP and SPLP tests were conducted to determine the stabilization efficiency of As in soil and showed that the stabilization efficiency was increased with increasing the INPBC dosage and the concentration of As in SPLP extractant of Soil-E was lower than the drinking water standard level of Ministry of Environment of South Korea. The sequential fractionation of As in the stabilized soils indicated that the fractions of As in the 1st and 2nd stages that correspond liable and known as bioavailable fraction were decreased and the fractions of As in 3rd and 4th stages that correspond relatively non-liable fraction were increased. Such a stabilization of As shows that the abundant nano Fe° on the surface of INPBC mixed with As-contaminated soils played the co-precipitation of As leaching from soil by surface complexation with iron. The results of this study may imply that INPBC as a promising amendments for the stabilization of As-contaminated soil play an important role.

The Habitat Classification of mammals in Korea based on the National Ecosystem Survey (전국자연환경조사를 활용한 포유류 서식지 유형의 분류)

  • Lee, Hwajin;Ha, Jeongwook;Cha, Jinyeol;Lee, Junghyo;Yoon, Heenam;Chung, Chulun;Oh, Hongshik;Bae, Soyeon
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.2
    • /
    • pp.160-170
    • /
    • 2017
  • The purpose of this study is to perform clustering of the habitat types and to identify the characteristics of species in the habitat types using mammal data (70,562) of the 3rd National Ecosystem Survey conducted from 2006 to 2012. The 15 habitat types recorded in the field-paper of the 3rd National ecosystem survey were reclassified, which was followed by the statistical analysis of mammal habitat types. In the habitat types cluster analysis, non-hierarchical cluster analysis (k-means cluster analysis), hierarchical cluster analysis, and non-metric multidimensional scaling method were applied to 14 habitat types recorded more than 30 times. A total of 7 Orders, 16 Families, and 39 Species of mammals were identified in the 3rd National Ecosystem Survey collected nationwide. When 11 clusters were classified by habitat types, the simple structure index was the highest (ssi = 0.07). As a result of the similarities and hierarchies between habitat types suggested by the hierarchical clustering analysis, the residential areas were the most different habitat types for mammals; the next following type was a cluster together with rivers and coasts. The results of the non-metric multidimensional scaling analysis demonstrated that both Mus musculus and Rattus norvegicus restrictively appeared in a residential area, which is the most discriminating habitat type. Lutra lutra restrictively appeared in coastal and river areas. In summary, according to our results, the mammalian habitat can be divided into the following four types: (1) the forest type (using forest as the main habitat and migration route); (2) the river type (using water as the main habitat); (3) the residence habitat (living near residential area); and (4) the lowland type (consuming grain or seeds as the main feeding resource).

A Management Plan According to the Estimation of Nutria (Myocastorcoypus) Distribution Density and Potential Suitable Habitat (뉴트리아(Myocastor coypus) 분포밀도 및 잠재적 서식가능지역 예측에 따른 관리방향)

  • Kim, Areum;Kim, Young-Chae;Lee, Do-Hun
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.2
    • /
    • pp.203-214
    • /
    • 2018
  • The purpose of this study is to estimate the concentrated distribution area of nutria (Myocastor coypus) and potential suitable habitat and to provide useful data for the effective management direction setting. Based on the nationwide distribution data of nutria, the cross-validation value was applied to analyze the distribution density. As a result, the concentrated distribution areas thatrequired preferential elimination is found in 14 administrative areas including Busan Metropolitan City, Daegu Metropolitan City, 11 cities and counties in Gyeongsangnam-do and 1 county in Gyeongsangbuk-do. In the potential suitable habitat estimation using a MaxEnt (Maximum Entropy) model, the possibility of emergency was found in the Nakdong River middle and lower stream area and the Seomjin riverlower stream area and Gahwacheon River area. As for the contribution by variables of a model, it showed DEM, precipitation of driest month, min temperature of coldest month and distance from river had contribution from the highest order. In terms of the relation with the probability of appearance, the probability of emergence was higher than the threshold value in areas with less than 34m of altitude, with $-5.7^{\circ}C{\sim}-0.6^{\circ}C$ of min temperature of the coldest month, with 15-30mm of precipitation of the driest month and with less than 1,373m away from the river. Variables that Altitude, existence of water and wintertemperature affected settlement and expansion of nutria, considering the research results and the physiological and ecological characteristics of nutria. Therefore, it is necessary to reflect them as important variables in the future habitable area detection and expansion estimation modeling. It must be essential to distinguish the concentrated distribution area and the management area of invasive alien species such as nutria and to establish and apply a suitable management strategy to the management site for the permanent control. The results in this study can be used as useful data for a strategic management such as rapid management on the preferential management area and preemptive and preventive management on the possible spreading area.

Estimation of Long-term Effects of Harvest Interval and Intensity, and Post-harvest Residue Management on the Soil Carbon Stock of Pinus densiflora Stands using KFSC Model (한국형 산림토양탄소모델(KFSC)을 이용한 수확 주기 및 강도와 수확 후 잔재물 처리방법에 따른 소나무림 토양탄소 저장량의 장기 변화 추정 연구)

  • Park, Chan-Woo;Yi, Koong;Lee, Jongyeol;Lee, Kyeong-Hak;Yi, Myong-Jong;Kim, Choonsig;Park, Gwan-Soo;Kim, Raehyun;Son, Yowhan
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.1
    • /
    • pp.82-89
    • /
    • 2013
  • Harvest is one of the major disturbances affecting the soil carbon (C) dynamics in forests. However, researches on the long-term impact of periodic harvest on the soil C dynamics are limited since they requires rigorous control of various factors. Therefore, we adopted a modeling approach to determine the long-term impacts of harvest interval, harvest intensity and post-harvest residue management on soil C dynamics by using the Korean Forest Soil Carbon model (KFSC model). The simulation was conducted on Pinus densiflora S. et Z. stands in central Korea, and twelve harvest scenarios were tested by altering harvest intervals (50, 80, and 100-year interval), intensities (partial-cut harvest: 30% and clear-cut harvest: 100% of stand volume), and the residue managements after harvest (collection: 0% and retention: 100% of aboveground residue). We simulated the soil carbon stock for 400 years for each scenario. As a result, the soil C stocks in depth of 30 cm after 400 years range from 50.3 to 55.8 Mg C $ha^{-1}$, corresponding to 98.1 to 108.9% of the C stock at present. The soil C stock under the scenarios with residue retention was 2.5-11.0% higher than that under scenarios with residue collection. However, there was no significant impact of harvest interval and intensity on the soil C stock. The soil C dynamics depended on the dead organic matter dynamics derived from the amount of dead organic matter and growth pattern after harvest.

Comparison of Human Health Risk Assessment of Heavy Metal Contamination from Two Abandoned Metal Mines Using Metal Mine-specific Exposure Parameters (국내 폐금속 광산에 특화된 노출인자를 이용한 두 폐금속 광산 중금속 오염에 대한 인체위해성평가 비교)

  • Lim, Tae-Yong;Lee, Sang-Woo;Cho, Hyen Goo;Kim, Soon-Oh
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.6
    • /
    • pp.414-431
    • /
    • 2016
  • There are numerous closed and abandoned mines in Korea, from which diverse heavy metals (e.g., As, Cd, Cu, Pb, Zn) are released into the surrounding soil, groundwater, surface water, and crops, potentially resulting in detrimental effects on the health of nearby residents. Therefore, we performed human risk assessments of two abandoned metal mines, Yanggok (YG) and Samsanjeil (SJ). The exposure parameters used in this assessment were specific to residents near mines and the included exposure pathways were relevant to areas around metal mines. The computed total excess carcinogenic risks for both areas exceeded the acceptable carcinogenic risk ($1{\times}10^{-6}$), indicating that these areas are likely unsafe due to a carcinogenic hazard. In contrast, the non-carcinogenic risks of the two areas differed among the studied receptors. The hazard indices were higher than the unit risk (=1.0) for male and female adults in YG and male adults in SJ, suggesting that there are non-carcinogenic risks for these groups in the study areas. However, the hazard indices for children in YG and female adults and children in SJ were lower than the unit risk. Consumption of groundwater and crops grown in the area were identified as major exposure pathways for carcinogenic and non-carcinogenic hazards in both areas. Finally, the dominant metals contributing to carcinogenic and non-carcinogenic risks were As and As, Cu, and Pb, respectively. In addition, the carcinogenic and non-carcinogenic risks of YG were evaluated to be 10 and 4 times higher than those of SJ, respectively, resulted from the relatively higher exposure concentration of As in groundwater within SJ area. Because of lacking of several exposure parameters, some of average daily dose (ADD) could not be computed in this study. Furthermore, it is likely that the ADDs of crop-intake pathway included some errors because they were calculated using soil exposure concentrations and bioconcentration factor (BCF) rather than using crop exposure concentrations.

Effects of Fouling and Scaling on the Retention of Explosives in Surface Water by NF-the Role of Cake Enhanced Concentration Polarisation (지표수 조건의 나노여과공정에서 파울링 및 스케일링이 화약류 물질 잔류에 미치는 영향 연구 - 케익층 형성 및 농도분극 영향 분석)

  • Heo, Jiyong;Han, Jonghun;Lee, Heebum;Lee, Jongyeol;Her, Namguk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.4
    • /
    • pp.13-22
    • /
    • 2015
  • The combined impact of Dissolved Organic Matter (DOM) fouling and inorganic ($CaSO_4,Ca_3(PO_4)_2$) scaling on the retention of TNT (2, 4, 6-Trinitrotoluene), RDX (Hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine) and HMX (1, 3, 5, 7-Tetranitro-1, 3, 5, 7-tetrazocane) explosive contaminants by nano-filtration membrane were studied, since organic fouling and salt scaling are the major limitations for membrane filtration. Results reported here indicate that DOM fouling layer with a humic acid does not necessarily lead to an immediate loss of permeate flux but can result in a severe impact on the flux loss when both humic acid and inorganic scaltants were presented simultaneously. The $Ca_3(PO_4)_2$ mixed with humic acid showd most sever flux loss (42%) compared to that of only humic acid presence (8%). It could be a result that the scaling formation of the NF membrane was dominated by cake layer formation of DOM and it was along with pore blocking by the formation of crystals inside the porous active matrix of the NF membrane. In addition, these results indicated that the membrane selectivity of the explosives retention trended correlated with respect to increasing explosives size (listed by MW) based on greater steric interactions and followed the order (MW, g $mol^{-1}$; removal, %): HMX (296.15; 83%) ${\gg}$ RDX (222.12; 49%) ≋ TNT (227.13; 32%). Because the scaling and fouling layer could lead to a additional cake-enhanced concentration polarisation effect, the retention of explosives with the presence of humic acid in the feed solution and inorganic scaling formation on top of an organic fouling layer do not differ substantially retention from that of pure DI feed and NaCl solution.

Analysis of Growth Characteristics and Yield Components According to Rice Varieties Between on Irrigated and Partially Irrigated Rice Paddy Field (수리불안전답에서의 벼 품종별 생육 및 수량구성요소 특성 변이 분석)

  • Kim, Tae-Heon;Hur, Yeon-Jae;Oh, Seong-Hwan;Lee, Ji-Yoon;Cho, Jun-Hyun;Han, Sang-Ik;Lee, Jong-Hee;Baek, Dongwon;Song, You-Chun;Choi, Weon-Young;Nam, Min-Hee;Park, Dong-Soo;Kwon, Yeong-Up;Shin, Dongjin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.1
    • /
    • pp.17-24
    • /
    • 2016
  • Drought caused by global climate change is one of serious problems for rice cultivation. However, it was little reported the impact of drought on rice cultivation in Korea. In here, to assess impact of drought on rice varieties in Korean climate condition, growth characteristics and yield components of rice were compared on irrigated and partially irrigated rice paddy field. First, we have chosen 11 rice varieties including 'Saeilmi' and 'Shindongjin' which are widely cultivated in Korea. For partially irrigated rice paddy treatment, we have withheld irrigation from 25 days after transplanting and water supply was totally dependent on rainfall for rice cultivation. When we examined early plant height and tiller number of these varieties on partially irrigated rice paddy were reduced 1.6% to 18.4% and 10.4% to 33.1%, respectively, and these reduction rate were highly correlated with yield loss in our experimental conditions. Among rice yield components, panicle number was decreased 10.5% to 30.1% according to rice varieties and reduced panicle number was highly correlated with yield loss. Grain number per panicle, grain filling rate and 1,000 seeds weight did not have correlation with yield loss of rice varieties. These result means that growth stage, especially the tillering stage, is seriously affected by drought on rice cultivation in Korea. And we suggest that 'Saeilmi', 'Ilmi' and 'Ilpum' are good for rice cultivation on drought prone rice field in Korea.