• Title/Summary/Keyword: Water impact

Search Result 3,248, Processing Time 0.03 seconds

Physico-chemical Characteristics and In situ Fish Enclosure Bioassays on Wastewater Outflow in Abandoned Mine Watershed (폐광산 지역의 유출수에 대한 이.화학적 수질특성 및 Enclosure 어류 노출시험 평가)

  • An, Kwang-Guk;Bae, Dae-Yeul;Han, Jeong-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.2
    • /
    • pp.218-231
    • /
    • 2012
  • The objectives of this study were to evaluate the physico-chemical water quality, trophic and tolerance guilds in the control ($C_o$) and impacted streams of the abandoned mine, along with the ecological health, using a multimetric health model and physical habitat conditions of Qualitative Habitat Evaluation Index (QHEI), during the period of three years, 2005~2007. Also, eco-toxicity ($EE_t$) enclosure tests were conducted to examine the toxic effects on the outflows from the mine wastewater, using the sentinel species of Rhynchocypris oxycephalus, and we compared the biological responses of the control ($C_o$) and treatment (T) to the effluents through a Necropybased Health Assessment Index ($N_b$-HAI). Tissue impact analysis of the spleen, kidney, gill, liver, eyes, and fins were conducted in the controlled enclosure experiments (10 individuals). According to the comparisons of the control ($C_o$) vs. the treatment (T) in physicochemical water quality, outflows from the abandoned mine resulted in low pH of 3.2, strong acid wastewater, high ionic concentrations, based on an electrical conductivity, and high total dissolved solid (TDS). Physical habitat assessments, based on Qualitative Habitat Evaluation Index (QHEI) did not show any statistical differences (p>0.05) in the sampling sites, whereas, the $M_m$-EH model values in a multimetric ecological health ($M_m$-EH) model of the Index of Biological Integrity (IBI), using fish assemblages, were 16~20 (fair condition) in the control and all zero (0, poor condition) in the impacted sites of mine wastewater. In addition, in enclosure eco-toxicity ($EE_t$) tests, the model values of $N_b$-HAI ranged between 0 and 3 in the controls during the three years, indicating an excellent~good condition (Ex~G), and were >100 (range: 100~137) in the impacted sites, which indicates a poor condition (P). Under the circumstances, organ tissues, such as the liver, kidney, and gills were largely impaired, so that efficient water quality managements are required in the outflow area of the abandoned mine watershed.

Effects of Environmental Factors on Growth and Nitrogen Fixation Activity of Autumn Olive (Elaeognus umbellata) Seedlings (보리수나무 유식물의 생장과 질소고정 활성에 대한 환경요인의 영향)

  • 송승달
    • Journal of Plant Biology
    • /
    • v.37 no.3
    • /
    • pp.387-394
    • /
    • 1994
  • Effects of environmental factors of light, temperature, nitrogen sources and water stress were analyzed quantitatively on the nodule formation and nitrogen fixation activity of autumn olive plant (Elaeagnu$ umbellala Thunb.) during the seedling growth. Seedlings showed the maximum nitrogenase activity of $72.5\;\mu\textrm{M}\;C_2H_4{\cdot}g\;fr\;wt\;nodule^{-1}{\cdot}h^{-1}$ in the early nodulation stage. The relative growth rate and T/R ratio changed from $1.60%{\cdot}d^{-1}$ and 1.12 in the earlier stage to $3.75%{\cdot}d^{-1}$ and 2.31 in the later stage, respectively. light conditions of 20-25, 1015 and 4-6% resulted in decreases of 41, 54 and 71% of the nitrogenase activity, respectively. Nodules incubated in 15, 20, 25 and $30^{\circ}C$ showed the activities of 5.4, 24.7, 51.6 and $58.5\;\mu\textrm{M}\;C_2H_4{\cdot}g\;fr\;wt\;nodule^{-1}{\cdot}h^{-1}$ respectively. Pretreatment with low temperature ($15^{\circ}C$) followed incubation at $30^{\circ}C$ attained higher nitrogenase activity ($66.5\;\mu\textrm{M}\;C_2H_4{\cdot}g\;fr\;wt\;nodule^{-1}{\cdot}h^{-1}$) than that with higher temperature ($35^{\circ}C$). The oxygen pressure above 16 kPa is necessary for saturation of the nodule activity, but the activity was inhibited severely by physical impact such as the exision or isolation of nodules from the root. The relative activities of early nodules grown in pH 5.5, 6.5 and 8.0 were 89, 100 and 40% and those grown in 1 and 3 mM of $NO_3\;and\;NH_4$ were 6, 1 and 68, 50%, respectively. Watering levels of 20, 50 and 100 mL during the seedling growth resulted in 35, 120 and 8 mg of nodule formation and 33.6, 58.4 and $8.4\;\mu\textrm{M}\;C_2H_4{\cdot}g\;fr\;wt\;nodule^{-1}{\cdot}h^{-1}$ of the nitrogenase activity, respectively. Water stress with 86% decrease of soil water content caused temporary wilting point of leaf and a complete disappearance of nitrogenase activity of nodules, though the water content and transpiration rate in plant were reduced to 90 and 53%, respectively.tively.

  • PDF

Impact of Environmental Factors on in vitro Interactions and Niche Overlap between Aspergillus ochraceus and other Storage Fungi (Aspergillus ochraceus와 다른 저장균간의 in vitro 상호작용 및 Niche Overlap에 미치는 환경요인의 영향)

  • Lee, Hyang-Burm;Magan, Naresh;Yu, Seung-Hun
    • The Korean Journal of Mycology
    • /
    • v.27 no.4 s.91
    • /
    • pp.283-288
    • /
    • 1999
  • The effect of water activity ($a_w,\;0.9{\sim}0.995$) and temperature ($18{\sim}30^{\circ}$C) on in vitro growth and interactions between ochratoxin-producing Aspergillus ochraceus and six other fungi (Alternaria alternata, Aspergillus candidus, A. flavus, A. niger, Eurotium amstelodami, E. rubrum) isolated from maize grain were investigated. A. ochraceus and each six other species were paired and their interactions given a numerical score to obtain an index of dominance ($I_D$) for each species. Generally A. ochraceus was very competitive and dominant against other fungi. It was, however, dominanted by Alternaria alternata and A. niger at high $a_w\;(0.995\;a_w)$, and mutually antagonistic when paired with E. amstelodami and E. rubrum at low $a_w\;(0.9\;a_w)$. The growth rates of each species were also calculated under the same range of environmental conditions. They were markedly influenced by aw and temperature. At high temperature ($30^{\circ}C$), A. ochraceus grew most rapidly under slightly drier conditions ($0.95\;a_w$), while A. alternata, A. flavus and A. niger did at high water availability level ($0.995\;a_w$). At $18^{\circ}C\;and\;25^{\circ}C$, and high $a_w$ level ($0.995\;a_w$), A. alternata grew fastest, while A. candidus, E. amstelodami and E. rubrum grew very slowly. Using Biolog plates the effect of $a_w$ and temperature on utilization patterns of carbon sources in maize was evaluated. The niche overlap index (NOI) relative to A. ochraceus was determined and compared with that of each interacting species. Under high water available condition ($0.995\;a_w$). the NOI of A. ochraceus was often >0.9, indicative of the coexistence with other interacting species. However, against E. amstelodami and E. rubrum at $18^{\circ}C$, the species had NOI <0.8, indicative of occupation of different niches. At low $a_w\;(0.95\;a_w)$, NOI for A. ochraceus was <0.8 when paired with A. alternata and A. niger also suggested the occupation of different niches.

  • PDF

Distribution Characteristics and Ecosystem Risk Assessment of Dotted Duckweed (Landoltis punctate) in Jeju Island, Korea (제주도 내 점개구리밥(Landoltiapunctate) 분포와 생태계 위해성 평가)

  • Choi, Jong-Yun;Kim, Nam-Young;Ryu, Tae-Bok;Choi, Dong-Hee;Kim, Deokki;Kim, Seong-Ki
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.4
    • /
    • pp.425-439
    • /
    • 2018
  • W investigated the environmental factors and inhabiting biota such as macrophytes and zooplankton in 43 sites located on Jeju Island from May and June 2017 to evaluate the spread and ecosystem risk of dotted duckweed (landoltia punctata) which was recently found for the first time in Jeju Island. Dotted duckweeds were found in a total of 18 sites which tended to show low biomass of aquatic macrophyte species other than the dotted duckweed. We conducted a pattern analysis using SOM (Self-Organizing Map), which extracts information through competitive and adaptive properties, to analyze the effect of inhabiting biota on aquatic macrophytes such as the dotted duckweed and environmental factors. The SOM analysis showed that the inhabiting biota such as the zooplankton affected the biomass of aquatic macrophytes than they did the environmental factors. In particular, the biomass of dotted duckweed was positively related to plant-attached species (Alona, Chydorus, and Pleuroxus). Considering that low density of aquatic macrophytes covers the streams and wetlands on Jeju Island because of irregular water source and sharp change of water depth, the dotted duckweeds are likely to play an essential role as the vital habitat for micro-biota including zooplankton in wetlands and streams on Jeju Island. Furthermore, considering that organic matters are utilized as the primary food source in the areas occupied by dotted duckweed, dotted duckweeds have the role of being both habitat and food source. Although the dense growth of dotted duckweed adversely affects growth and development of some aquatic plants due to the shadow effect, it is due to the dominance of floating plants on the water surface should not be regarded as the risk of the dotted duckweed. In conclusion, the dotted duckweeds have spread and settled in most of the water systems on Jeju Island, their impact on inhabiting biota and the aquatic environment was minor. It is necessary to monitor the distribution and spread of dotted duckweeds in the inland areas outside of Jeju Island in the future.

Comparing the dosimetric impact of fiducial marker according to density override method : Planning study (양성자 치료계획에서 fiducial marker의 density override 방법에 따른 선량변화 비교 : Planning study)

  • Sung, Doo Young;Park, Seyjoon;Park, Ji Hyun;Park, Yong Chul;Park, Hee Chul;Choi, Byoung Ki
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.1
    • /
    • pp.19-26
    • /
    • 2017
  • Purpose: The application of density override is very important to minimize dose calculation errors by fiducial markers of metal material in proton treatment plan. However, density override with actual material of the fiducial marker could make problem such as inaccurate target contouring and compensator fabrication. Therefore, we perform density override with surrounding material instead of actual material and we intend to evaluate the usefulness of density override with surrounding material of the fiducial marker by analyzing the dose distribution according to the position, material of the fiducial marker and number of beams. Materials and Method: We supposed that the fiducial marker of gold, steel, titanium is located in 1.5, 2.5, 4.0, 6.0 cm from the proton beam's end of range using water phantom. Treatment plans were created by applying density override with the surrounding material and actual material of the fiducial marker. Also, a liver cancer patient who received proton therapy was selected. We located the fiducial marker of gold, steel, titanium in 0, 1.5, 3.5 cm from the proton beam's end of range and the treatment plans were created by same method with water phantom. Homogeneity Index(HI), Conformity Index(CI) and maximum dose of Organ At Risk(OAR) in Planning Target Volume(PTV) as the evaluation index were compared according to the material, position of the fiducial marker and number of beam. Results: The HI value was more decreased when density override with surrounding material of the fiducial marker was performed comparing with density override with actual material. Especially the HI value was increased when the fiducial marker was located farther from the proton beam's end of the range for a single beam and the fiducial marker's position was closer to isocenter for two or more beams. The CI value was close to 1 and OAR maximum dose was greatly reduced when density override with surrounding material of the fiducial marker was performed comparing with density override with actual material. Conclusion: Density override with surrounding material can be expected to achieve more precise proton therapy than density override with actual material of the fiducial marker and could increase the dose uniformity and target coverage and reduce the dose to surrounding normal tissues for the small fiducial markers used in clinical practice. Most of all, it is desirable to plan the treatment by avoiding the fiducial marker of metal material as much as possible. However, if the fiducial marker have on the beam path, density override of the surrounding material can be expected to achieve more precise proton therapy.

  • PDF

Long-term (2002~2017) Eutropication Characteristics, Empirical Model Analysis in Hapcheon Reservoir, and the Spatio-temporal Variabilities Depending on the Intensity of the Monsoon (합천호의 장기간 (2002~2017) 부영양화 특성, 경험적 모델 분석 및 몬순강도에 따른 시공간적 이화학적 수질 변이)

  • Kang, Yu-Jin;Lee, Sang- Jae;An, Kwang-Guk
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.5
    • /
    • pp.605-619
    • /
    • 2019
  • The objective of this study was to analyze eutrophication characteristics, empirical model analysis, and variation of water quality according to monsoon intensity in Hapcheon Reservoir for 16 years from 2002 to 2017. Long-term annual water quality analysis showed that Hapcheon Reservoir was in a meso-nutrition to eutrophic condition, and the eutrophic state intensified after the summer monsoon. Annual rainfall volume (high vs. low rainfall) and the seasonal intensity in each year were the key factors that regulate the long-term water quality variation provided that there is no significant change of the point- and non-point source in the watershed. Dry years and wet years showed significant differences in the concentrations of TP, TN, BOD, and conductivity, indicating that precipitation had the most direct influence on nutrients and organic matter dynamics. Nutrient indicators (TP, TN), organic pollution indicators (BOD, COD), total suspended solids, and chlorophyll-a (Chl-a), which was an estimator of primary productivity, had significant positive relations (p<0.05) with precipitation. The Chl-a concentration, which is an indicator of green algae, was highly correlated with TP, TN, and BOD, which differed from other lakes that showed the lower Chl-a concentration when nutrients increased excessively. Empirical model analysis of log-transformed TN, TP, and Chl-a indicated that the Chl-a concentration was linearly regulated by phosphorus concentration, but not by nitrogen concentration. Spatial regression analysis of the riverine, transition, and lacustrine zones of $log_{10}TN$, $log_{10}TP$, and $log_{10}CHL$ showed that TN and Chl-a had significant relations (p<0.005) while TN and Chl-a had p > 0.05, indicating that phosphorus had a key role in the algal growth. Moreover, the higher correlation of both $log_{10}TP$ and $log_{10}TN$ to $log_{10}CHL$ in the riverine zone than the lacustrine zone indicated that there was little impact of inorganic suspended solids on the light limitation in the riverine zone.

Environmental Impacts of Food Waste Compost Application on Paddy Soil (음식물쓰레기 퇴비 시용이 논토양에 미치는 영향)

  • So, Kyu-Ho;Seong, Ki-Seog;Seo, Myung-Chul;Hong, Seung-Gil
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.1
    • /
    • pp.85-94
    • /
    • 2007
  • To determine the influence of food waste compost (FWC) application on paddy soil, FWC was applied to the paddy soil and then compared with farmer's practice as to the effects on rice and soil environment. Initially, pig manure compost (PMC) had high content of phosphorus ($15g\;kg^{-1}$) and potassium ($23g\;kg^{-1}$), while FWC had high content of total nitrogen ($13g\;kg^{-1}$) and salinity ($18.5g\;kg^{-1}$). Comparison was also made between chemical fertilizer and FWC use as a trial in the paddy field under the clay loam and sandy loam soil. In the panicle formation stage, chemical fertilizer application was proper in clay loam while PMC application was proper in sandy loam. However, chemical fertilizer produced higher yield compared to compost treatment, both on clay loam and sandy loam with 20~25% and 17~19%, respectively. The lower yield in sandy loam maybe due to slow mineralization of compost such that the crop did not effectively use it. Organic matter content in paddy soil after experiment was higher in FWC and PMC plots compared to that in chemical fertilizer plots. But the other soil properties were comparable. Therefore, the FWC compost had little effect on soil when it use as a trial in paddy field. Likewise, after the application of FWC as a trial, analysis of nitrate nitrogen and ammonium nitrogen in the surface water and 60 cm depth of paddy soil water nine days after planting was done. Results revealed that concentration of ammonium nitrogen was similar to irrigation water while nitrate nitrogen concentration was not detected, and hence did not contribute to water pollution. It is concluded that the application of FWC in the paddy field had not affected on environmental pollution in the paddy field. But its use as compost during rice culture reduced yield quantity. Such study should include selection of compost material, amount and method of compost application.

A Study on Optimization of Nitric Acid Leaching and Roasting Process for Selective Lithium Leaching of Spent Batreries Cell Powder (폐 배터리 셀 분말의 선택적 리튬 침출을 위한 질산염화 공정 최적화 연구)

  • Jung, Yeon Jae;Park, Sung Cheol;Kim, Yong Hwan;Yoo, Bong Young;Lee, Man Seung;Son, Seong Ho
    • Resources Recycling
    • /
    • v.30 no.6
    • /
    • pp.43-52
    • /
    • 2021
  • In this study, the optimal nitration process for selective lithium leaching from powder of a spent battery cell (LiNixCoyMnzO2, LiCoO2) was studied using Taguchi method. The nitration process is a method of selective lithium leaching that involves converting non-lithium nitric compounds into oxides via nitric acid leaching and roasting. The influence of pretreatment temperature, nitric acid concentration, amount of nitric acid, and roasting temperature were evaluated. The signal-to-noise ratio and analysis of variance of the results were determined using L16(44) orthogonal arrays. The findings indicated that the roasting temperature followed by the nitric acid concentration, pretreatment temperature, and amount of nitric acid used had the greatest impact on the lithium leaching ratio. Following detailed experiments, the optimal conditions were found to be 10 h of pretreatment at 700℃ with 2 ml/g of 10 M nitric acid leaching followed by 10 h of roasting at 275℃. Under these conditions, the overall recovery of lithium exceeded 80%. X-ray diffraction (XRD) analysis of the leaching residue in deionized water after roasting of lithium nitrate and other nitrate compounds was performed. This was done to determine the cause of rapid decrease in lithium leaching rate above a roasting temperature of 400℃. The results confirmed that lithium manganese oxide was formed from lithium nitrate and manganese nitrate at these temperatures, and that it did not leach in deionized water. XRD analysis was also used to confirm the recovery of pure LiNO3 from the solution that was leached during the nitration process. This was carried out by evaporating and concentrating the leached solution through solid-liquid separation.

Evaluation of Fruit Yield and Quality of Netted Melon, Water and Nutrient Use Efficiency in a Closed Hydroponic System (순환식 수경재배 멜론의 수량과 품질, 관개수 및 양분 이용 효율성 평가)

  • Minju Shin;Seungri Yoon;Jin Hyun Kim;Ho Jeong Jeong;Sung Kyeom Kim
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.492-500
    • /
    • 2023
  • The spectrum of this study was research on the closed hydroponic cultivation of netted melons (Cucumis melo L.) using coir substrate, analyzing the impact of this cultivation method on melon yield, fruit quality, and the efficiency of water and nutrient usage. The experimental results showed that the average fruit weight of the melons grown in a closed system was 71.4 g higher than that of the open system, and the fruit width was on average 0.2 cm larger, showing a statistically significant difference. However, there was no difference in the average sugar content of the fruit flesh and height. Although there is no substantial commercial difference, it is conjectured that the change in the macronutrients ratio in the irrigation has played a role in the statistically significant increase in fruit weight, which is attributed to changes in the crops' nutrient uptake concentrations. This necessitates further research for a more comprehensive understanding. In terms of the productivity of irrigation required to produce the fruit, applying the closed system resulted in an increase of 7.6 kg/ton compared to the open system, saving 31.6% of water resources. Additionally, in terms of nutrients, cultivating in a closed system allowed for savings of approximately 59, 25, 55, 83, 76, and 87% of N, P, K, Ca, Mg, and S, respectively, throughout the entire cultivation period. As the drainage was reused, the ratios of NO3- and Ca2+ increased up to a maximum of 9.6 and 9.1%, respectively, while the ratios of other ions gradually decreased. In summary, these results suggest that closed hydroponic cultivation can effectively optimize the use of water and fertilizer while maintaining excellent fruit quality in melon cultivation.

Human Risk Assessment of Toxic Heavy Metals Around Abandoned Metal Mine Sites (금속광산지역 독성 중금속원소들의 인체 위해성 평가)

  • 이진수;전효택
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.73-86
    • /
    • 2004
  • In order to estimate the post-ingestion bioavailability of heavy metals and to assess the risk of adverse health effects on human exposure to toxic heavy metals, environmental geochemical surveys were undertaken around the Dogok Au-Ag-Cu and the Hwacheon Au-Ag-Pb-Zn mine sites. Human risk assessment of toxic heavy metals was performed with the results of the SBET(simple bioavailability extraction test) analysis for soil and chemical analytical data for crop plant and water. Arsenic and other heavy metals were highly elevated in tailings from the Dogok(218 As mg/kg, 90.2 Cd mg/kg, 3,053 Cu mg/kg, 9,473 Pb mg/kg, 14,500 Zn mg/kg) and the Hwacheon(72 As mg/kg, 12.4 Cd mg/kg. 578 Pb mg/kg, 1,304 Zn mg/kg) mines. These significant concentrations can impact on soils and waters around the tailing dumps. The quantities of As, Cd and Zn extracted from paddy soils in the Hwacheon mine using the SBET analysis were 55.4%, 20.8% and 26.4% bioavailability, respectively, and for farmland soils in the Dogok mine, 40.8%, 37.6% and 33.0% bioavailability, respectively. From the results of human risk assessment, HI(Hazard Index) value exceeded 1.0 for As in the Hwacheon mine and for Cd in the Dogok mine. Thus, toxic risks for As and Cd exist via exposure(ingestion) of contaminated soil, water and rice grain in these mine sites. The cancer risk for As by the consumption of rice and groundwater in the Hwacheon mine area was 8E-4 and 1E-4, respectively. This risk level exceeds the acceptable risk(1 in 100,000) for regulatory purpose. Therefore, regular ingestion of locally grown rice and ground-water by the local population can pose a potential health threat due to long-term arsenic exposure.