• 제목/요약/키워드: Water flow rate

검색결과 3,031건 처리시간 0.036초

증발수 유량이 간접 증발식 냉각기 성능에 미치는 영향 (Effects of Evaporation Water Flow Rate on the Performance of an Indirect Evaporative Cooler)

  • 추현선;이관수;이대영
    • 설비공학논문집
    • /
    • 제18권9호
    • /
    • pp.714-721
    • /
    • 2006
  • In evaporative cooling applications, the evaporation water is supplied usually sufficiently larger than the amount evaporated to enlarge contact surface between the water and the air. Especially in indirect evaporative coolers, however, if the evaporation water flow rate is excessively large, the evaporative cooling effect is not used for heat absorption from the hot fluid but spent to the sensible cooling of the evaporation water itself. This would result in a decrease in the cooling performance of the indirect evaporative cooler. In this study, the effects of the evaporation water flow rate on the cooling performance are investigated theoretically. The cooling process in an indirect evaporative cooler is modeled into a set of linear differential equations and solved to obtain the exact solutions to the temperatures of the hot fluid, the moist air, and the evaporation water. Based on the exact solutions, it is analyzed how much the cooling performance is affected by the evaporation water flow rate. The results show that the decrease in the cooling effectiveness is substantial even for a small flow rate of the evaporation water and the relative decrease is more serious for a high-performance evaporative cooler.

Air-Water Two-Phase Flow Performances of Centrifugal Pump with Movable Bladed Impeller and Effects of Installing Diffuser Vanes

  • Sato, Shinji;Furukawa, Akinori
    • International Journal of Fluid Machinery and Systems
    • /
    • 제3권3호
    • /
    • pp.245-252
    • /
    • 2010
  • It's known that pump head of centrifugal impeller with lager blade outlet angle is kept higher in air-water two phase flow condition, though the efficiency in water single phase flow condition is inferior. In the present study, a centrifugal impeller with variable blade outlet angles, that has higher efficiencies in both water single phase flow and air-water two phase flow conditions, is proposed. And the performances of the centrifugal impeller with variable blade outlet angles were experimentally investigated in both flow conditions of single and two-phase. In addition, effects of installing diffuser vanes on the performances of centrifugal pump with movable bladed impeller were also examined. The results are as follows: (1) The movable bladed impeller that proposed in this study is effective for higher efficiency in both water single phase and air-water two phase flow conditions. (2) When diffuser vanes are installed, the efficiency of movable bladed impeller decreases particularly at large water flow rate in water single-phase flow condition; (3) The performances of movable bladed impeller are improved by installing of diffuser vanes in air-water two-phase flow condition at relatively small water rate. The improvement by installing of diffuser vanes however disappears at large water flow rate.

유량 데이터 오차율 분석을 통한 최적의 유량데이터 취득방안 제안 (The Propose of Optimal Flow Data Acquisition by Error Rate Analysis of Flow Data)

  • 김윤하;최현주
    • 상하수도학회지
    • /
    • 제31권3호
    • /
    • pp.249-256
    • /
    • 2017
  • Recently, application areas based on M2M (Machine-to-Machine communications) and IoT (Internet of Things) technologies are expanding rapidly. Accordingly, water flow and water quality management improvements are being pursued by applying this technology to water and sewage facilities. Especially, water management will collect and store accurate data based on various ICT technologies, and then will expand its service range to remote meter-reading service using smart metering system. For this, the error in flow rate data transmitting should be minimized to obtain credibility on related additional service system such as real time water flow rate analysis and billing. In this study, we have identified the structural problems in transmitting process and protocol to minimize errors in flow rate data transmission and its handling process which is essential to water supply pipeline management. The result confirmed that data acquisition via communication system is better than via analogue current values and pulse, and for communication method case, applying the industrial standard protocol is better for minimizing errors during data acquisition versus applying user assigned method.

유황분석과 수질변화 평가를 통한 비점오염원 관리대상지역 선정방법 연구 (Watershed Selection for Diffuse Pollution Management Based on Flow Regime Alteration and Water Quality Variation Analysis)

  • 정우혁;이상진;김건하;정상만
    • 한국물환경학회지
    • /
    • 제27권2호
    • /
    • pp.228-234
    • /
    • 2011
  • The goal of water quality management on stream and watershed is to focus not on discharged loads management but on a water quality management. Discharged loads management is not goal of water quality management but way for perform with total maximum daily loads management. It is necessary to estimate the relation between non-point source with stromwater runoff (NPSSR) and water quality to select a watershed where it is required to manage NPSSR for water quality improvement. To evaluate the effects of NPSSR on stream's water quality, we compare the aspects of water quality in dry and wet seasons using flow duration curve analysis based on flow rate variation data by actual surveying. In this study we attempt to quantify the variation characteristic of water quality and estimate the Inflow characteristic of pollution source with water quality and flow rate monitoring on 10 watersheds. We try to estimate water quality and flow rate by regression analysis and try again regression analysis with each high and low water quality data more than estimations. An analysis of relation between water quality and flow rate of 10 watersheds shows that the water quality of the Nonsan and the Ganggyeong streams had been polluted by NPSSR pollutants. Other eight streams were important point source more than NPSSR. It is wide variation range of $BOD_5$ also high average concentration of $BOD_5$. We have to quantify water quality variation by cv1 in wet season and cv365 in dry season with comparing the estimate of high water quality and low water quality. This method can be used to indicator for water quality variation according to flow rate.

딥러닝 모형을 이용한 팔당대교 지점에서의 유량 예측 (Flow rate prediction at Paldang Bridge using deep learning models)

  • 성연정;박기두;정영훈
    • 한국수자원학회논문집
    • /
    • 제55권8호
    • /
    • pp.565-575
    • /
    • 2022
  • 최근의 수자원공학 분야는 4차산업혁명과 더불어 비약적으로 발전된 딥러닝 기술을 활용한 시계열 수위 및 유량의 예측에 대한 관심이 높아지고 있다. 또한 시계열 자료의 예측이 가능한 LSTM 모형과 GRU 모형을 활용하여 수위 및 유량 예측을 수행하고 있지만 시간 변동성이 매우 큰 하천에서의 유량 예측 정확도는 수위 예측 정확도에 비해 낮게 예측되는 경향이 있다. 본 연구에서는 유량변동이 크고 하구에서의 조석의 영향이 거의 없는 한강의 팔당대교 관측소를 선택하였다. 또한, LSTM 모형과 GRU 모형의 입력 및 예측 자료로 활용될 유량변동이 큰 시계열 자료를 선택하였고 총 자료의 길이는 비교적 짧은 2년 7개월의 수위 자료 및 유량 자료를 수집하였다. 시간변동성이 큰 시계열 수위를 2개의 모형에서 학습할 경우, 2개의 모형 모두에서 예측되는 수위 결과는 관측 수위와 비교하여 적정한 정확도가 확보되었으나 변동성이 큰 유량 자료를 2개의 모형에서 직접 학습시킬 경우, 예측되는 유량 자료의 정확도는 악화되었다. 따라서, 본 연구에서는 급변하는 유량을 정확히 예측하기 위하여 2개 모형으로 예측된 수위 자료를 수위-유량관계곡선의 입력자료로 활용하여 유량의 예측 정확도를 크게 향상시킬 수 있었다. 마지막으로 본 연구성과는 수문자료의 별도 가공없이 관측 길이가 상대적으로 충분히 길지 않고 유출량이 급변하는 도시하천에서의 홍수예경보 자료로 충분히 활용할 수 있을 것으로 기대된다.

수막하우스의 유량 및 수온에 따른 열전달 특성 분석 (Analysis of Heat Transfer Characteristics in Response to Water Flow Rate and Temperature in Greenhouses with Water Curtain System)

  • 김형권;김승희;권진경
    • 생물환경조절학회지
    • /
    • 제25권4호
    • /
    • pp.270-276
    • /
    • 2016
  • This study analysed overall heat transfer coefficient, heat transmission, and rate of indoor air heating provided by water curtain in order to determine the heat transfer characteristic of double-layered greenhouse equipped with a water curtain system. The air temperatures between the inner and outer layers were determined by the water flow rate and inlet water temperature. Higher water flow rate and inlet water temperature resulted in the increased overall heat transfer coefficient between indoor greenhouse air and water curtain. However, it was found that with higher levels of water flow rate and inlet water temperature, indoor overall heat transfer coefficient was converged about $10W{\cdot}m^{-2}{\cdot}^oC^{-1}$. The low correlation of overall heat transfer coefficient between water curtain and air within double layers was likely because the combination of greenhouse shape, wind speed and outdoor air temperature as well as water curtain affected the heat transfer characteristics. As water flow rate and inlet water temperature increased, the heat transferred into the greenhouse by water curtain also tend to rise. However it was demonstrated that the rate of heat transmission from water curtain into greenhouse with water curtain system using underground water was accounted for 22% to 28% for total heat lost by water curtain. The results of this study which quantify heat transfer coefficient and net heat transfer from water curtain may be a good reference for economical design of water curtain system.

Cherepnov 송수기에 대한 배수제어방식의 실험적 특성 (Experimental Characteristic of Drain Control to Cherepnov Water Lifter)

  • 박성천;이강일
    • 한국농공학회지
    • /
    • 제39권6호
    • /
    • pp.67-79
    • /
    • 1997
  • The perpose of this study was to suggest the experimental characteristic of the Cherepnov Water Lifter following the drain mode. The Cherepnov Water Lifter(CWL), which is powered by the potential energy of water, can be set to operate automatically when the water m a tank is drained. In this study, a CWL is constructed in the valve drain controlling mode(VCM) and the siphon drain controlling mode(SCM), and a pressure transducer is installed. It was found that, in the VCM, intake flow volume is proportional to both delivery flow volume and drain flow volume. In the SCM, intake flow volume is proportional to drain flow volume, and the average delivery rate is proportional to both efficiency and the water utilization ratio. Also, in the VCM, the water utilization ratio is 35~49%, efficiency is 62~9O%, average delivery rate is 12.8~81.2$cm^3$/s, and the average drain rate is 14.O~91.5c$cm^3$/s. On the contrary in the SCM, the water utilization ratio is 1.7~38%, efficiency is 3~58%, average delivery rate is 3.1 ~69.2$cm^3$/s, and the average drain rate is shown as 114.5~ 183$cm^3$/s. As a result of the water utilization ratio, efficiency, average delivery rate, and average drain rate are compared, the VCM is found to be superior and the more economical mode. However, the VCM requires manpower and electricity to operate the electronic machinery involved, while the SCM requires no manpower or electricity at all. An economic evaluation of these differences will be necessary in the future. Also, in the SCM, studies to improve water utilization ratio and efficiency, to find the optimum height of the siphon for decreasing the average drain rate, and to determine the radius of curvature of throat have to be conducted in advance, since a large flow rate is drained during the priming action of the siphon.

  • PDF

보론강 판재 핫스탬핑시 직수분사냉각 공정의 적용성 (The Application of Direct Water Quenching Process in Hot Stamping of Boron Steels)

  • 박현태;권의표;임익태
    • 한국재료학회지
    • /
    • 제29권12호
    • /
    • pp.818-824
    • /
    • 2019
  • In this study, the direct water quenching technique is applied to validate the applicability of direct water quenching as a cooling method in the hot stamping process of 3.2 mm thick boron steel sheet. Cooling performance of conventional die quenching and direct water quenching is compared. Higher cooling rate is obtained by hot stamping with direct water quenching compared to die quenching. As the flow rate of cooling water increases, the cooling rate increases, and a high cooling rate of 71 ℃/s is achieved under flow rate conditions of 0.8 L/min. Through direct water quenching, the cooling time required for sufficient cooling of the sheet is reduced. Full martensitic microstructure is obtained under flow rate condition of 0.8 L/min. Hardness increases with increasing flow rate. From these results, it is verified that the direct water quenching is applicable to the hot stamping of thick boron steel sheet.

Water transport through hydrophobic micro/nanoporous filtration membranes on different scales

  • Mian, Wang;Yongbin, Zhang
    • Membrane and Water Treatment
    • /
    • 제13권6호
    • /
    • pp.313-320
    • /
    • 2022
  • Theoretical calculation results are presented for the enhancement of the water mass flow rate through the hydrophobic micro/nano pores in the membrane respectively on the micrometer and nanometer scales. The water-pore wall interfacial slippage is considered. When the pore diameter is critically low (less than 1.82nm), the water flow in the nanopore is non-continuum and described by the nanoscale flow equation; Otherwise, the water flow is essentially multiscale consisting of both the adsorbed boundary layer flow and the intermediate continuum water flow, and it is described by the multiscale flow equation. For no wall slippage, the calculated water flow rate through the pore is very close to the classical hydrodynamic theory calculation if the pore diameter (d) is larger than 1.0nm, however it is considerably smaller than the conventional calculation if d is less than 1.0nm because of the non-continuum effect of the water film. When the driving power loss on the pore is larger than the critical value, the wall slippage occurs, and it results in the different scales of the enhancement of the water flow rate through the pore which are strongly dependent on both the pore diameter and the driving power loss on the pore. Both the pressure drop and the critical power loss on the pore for starting the wall slippage are also strongly dependent on the pore diameter.

방류수의 수위 및 유량 분석을 통한 해양 소수력 성능평가 (Performance Evaluation of Ocean Small Hydropower Plant by Analyzing Water Level and Flow Rate of Circulating Water)

  • 강금석;김지영;유무성
    • 신재생에너지
    • /
    • 제5권3호
    • /
    • pp.32-39
    • /
    • 2009
  • The Samcheonpo ocean small hydropower plant (SHP) has a special feature of using marginal hydraulic head of circulating water system of fossil fuel power plant as a power source and having the characteristics of general hydropower generation and tidal power generation as well. Also, it contributes to reducing green house gases and developing clean energy source by recycling circulating water energy otherwise dissipated into the ocean. The efficiency of small hydropower plant is directly affected by effective head and flow rate of discharged water. Therefore, the efficiency characteristics of ocean hydropower plant are analyzed with the variation of water level and flow rate of discharged water, which is based on the accumulated operation data of the Samcheonpo hydropower plant. After the start of small hydropower plant operation, definite rise of water level was observed. As a result of flow pattern change from free flow to submerged flow, the instability of water surface in overall open channel is increased but it doesn't reach the extent of overflowing channel or having an effect on circulation system. Performance evaluation result shows that the generating power and efficiency of small hydropower exceeds design requirements in all conditions. Analysis results of CWP's water flow rate verify that the amount of flowing water is measured less and the highest efficiency of small hydropower plant is achieved when the effective head has its maximum value. In conclusion, efficiency curve derived from water flow rate considering tidal level shows the best fitting result with design criteria curve and it is verified that overall efficiency of hydropower system is satisfactory.

  • PDF