• 제목/요약/키워드: Water film

검색결과 1,932건 처리시간 0.027초

Rheology of Slurries and Effects of Polymer Volume Ratio in Aqueous PZT Tape Casting

  • Yoon, Seok-Jin;Shin, Hyo-Soon;Lee, Dong-Kyun;Kang, Chong-Yun;Park, Ji-Won;Kim, Hyun-Jai
    • The Korean Journal of Ceramics
    • /
    • 제7권1호
    • /
    • pp.16-19
    • /
    • 2001
  • For the fast dry of the aqueous tape, the process which water was reaplaced by organic solvent was proposed. Socalled, it was the solvent washing dry. Three organic solvents (methanol, ethanol and acetone) were selected for the washing solvent. The weight loss of the washed tapes was measured to evaluate the dry rate of the tapes and dried tapes were examined the generation of the cracks with the variations of the organic solvent and the washing time. Methanol, ethanol and acetone were available organic solvents for this method. The tapes washed in methanol, ethanol and acetone were dried rapidly for twenty minutes. After thirty minutes, the weight losses were not found any more, The solvent of the lower surface tension can decreases the crack of dried tape. If solvent substitutes water completely, though it was fast dried, crack can be eliminated.

  • PDF

Solvent Washing Dry Method for Aqueous Tape Casting

  • Yoon, Seok-Jin;Shin, Hyo-Soon;Park, Ji-Won;Kang, Chong-Yun;Kim, Tae-Song;Kim, Hyun-Jai
    • The Korean Journal of Ceramics
    • /
    • 제7권2호
    • /
    • pp.55-57
    • /
    • 2001
  • For the fast dry of the aqueous tape, the process which water was replaced by organic solvent was proposed. Socalled, it was the solvent washing dry. Three organic solvents (methanol, ethanol and acetone) were selected for the washing solvent. The weight loss of the washed tapes was measured to evaluate the dry rate of the tapes and dried tapes were examined the generation of the cracks with the variations of the organic solvent and the washing time. Methanol, ethanol and acetone were available organic solvents for this method. The tapes washed in methanol, ethanol and acetone were dried rapidly for twenty minutes. After thirty minutes, the weight losses were not found any more. The solvent of the lower surface tension can decreases the crack of dried tape. If solvent substitutes water completely, though it was fast dried, crack can be eliminated.

  • PDF

수평 평활관 외측의 액막 증발에 관한 연구 (Thin Film Evaporation on Horizontal Plain Tubes)

  • 김정오;김내현;최국광
    • 태양에너지
    • /
    • 제18권4호
    • /
    • pp.49-57
    • /
    • 1998
  • In this study, thin film evaporation of water on a horizontal plain tube is experimentally investigated. At a high heat flux, boiling of water is noticed inside the film. Once boiling occurs, evaporation heat transfer coefficient increases as the heat flux increases. In the non-boiling region, however, the heat transfer coefficient remains uniform irrespective of the heat flux. In this region, the heat transfer coefficient increases as the film flow rate increases. Comparison with existing correlations is also provided.

  • PDF

An Analytic Study on Laminar Film Condensation along the Interior Surface of a Cave-Shaped Cavity of a Flat Plate Heat Pipe

  • Lee, Jin-Sung;Kim, Tae-Gyu;Park, Tae-Sang;Kim, Choong-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제16권7호
    • /
    • pp.966-974
    • /
    • 2002
  • An analytic approach has been employed to study condensate film thickness distribution inside cave-shaped cavity of a flat plate heat pipe. The results indicate that the condensate film thickness largely depends on mass flow rate and local velocity of condensate. The increasing rate of condensate film for circular region reveals about 50% higher value than that of vertical region. The physical properties of working fluid affect significantly the condensate film thickness, such as the condensate film thickness for the case of FC-40 are 5 times larger than that of water. In comparison with condensation on a vertical wall, the average heat transfer coefficient in the cave-shaped cavity presented 10∼15% lower values due to the fact that the average film thickness formed inside the cave-shaped cavity was larger than that of the vertical wall with an equivalent flow length. A correlation formula which is based on the condensate film analysis for the cave-shaped cavity to predict average heat transfer coefficient is presented. Also, the critical minimum fill charge ratio of working fluid based on condensate film analysis has been predicted, and the minimum fill charge ratios for FC-40 and water are about Ψ$\_$crit/=3∼7%, Ψ$\_$crit/=0.5∼1.3% respectively, in the range of heat flux q"=5∼90kW/㎡.

Effect of Hydrogen Treatment on Anatase TiO2 Nanotube Arrays for Photoelectrochemical Water Splitting

  • Kim, Hyun Sik;Kang, Soon Hyung
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권7호
    • /
    • pp.2067-2072
    • /
    • 2013
  • Hydrogen ($H_2$) treatment using a two-step $TiO_2$ nanotube (TONT) film was performed under various annealing temperatures from $350^{\circ}C$ to $550^{\circ}C$ and significantly influenced the extent of hydrogen treatment in the film. Compared with pure TONT films, the hydrogen-treated TONT (H:TONT) film showed substantial improvement of material features from structural, optical and electronic aspects. In particular, the extent of enhancement was remarkable with increasing annealing temperature. Light absorption by the H:TONT film extended toward the visible region, which was attributable to the formation of sub-band-gap states between the conduction and valence bands, resulting from oxygen vacancies due to the $H_2$ treatment. This increased donor concentration about 1.5 times higher and improved electrical conductivity of the TONT films. Based on these analyses and results, photoelectrochemical (PEC) performance was evaluated and showed that the H:TONT film prepared at $550^{\circ}C$ exhibited optimal PEC performance. Approximately twice higher photocurrent density of 0.967 $mA/cm^2$ at 0.32 V vs. NHE was achieved for the H:TONT film ($550^{\circ}C$) versus 0.43 $mA/cm^2$ for the pure TONT film. Moreover, the solar-to-hydrogen efficiency (STH, ${\eta}$) of the H:TONT film was 0.95%, whereas a 0.52% STH efficiency was acquired for the TONT film. These results demonstrate that hydrogen treatment of TONT film is a simple and effective tool to enhance PEC performance with modifying the properties of the original material.

연소성능 파라미터가 추력실의 막냉각 성능에 미치는 영향 (The Effect on the Film Cooling Performance of Thrust Chamber with Combustion Performance Parameters)

  • 김선진;정충연
    • 한국추진공학회지
    • /
    • 제9권4호
    • /
    • pp.48-54
    • /
    • 2005
  • 액체 산소(LOx)와 Jet A-1(Jet engine fuel)을 추진제로 하는 소형 액체 로켓 연소기에서 막 냉각의 효과에 관한 실험적 연구를 수행하였다. 막 냉각제(Jet A-1과 물)는 막냉각장치를 통해 분사되도록 하였다. 막 냉각 유량 변화에 따른 연소기의 외벽온도 및 막 냉각 길이는 추진제 혼합비, 연소실 압력 및 막냉각장치의 형상 변화(분사각)에 따라 비교하였다. 막 냉각에 따른 특성속도 효율의 손실도 막 냉각제를 물과 Jet A-1을 사용하였을 경우에 대해서 각각 구하였다. 연소실 압력의 증가에 따라 노즐에서의 외벽 온도는 증가하였으나, 퍼센트 막냉각 유량이 9% 이상인 경우에 연소실에서는 거의 영향을 받지 않았다. 특성속도는 퍼센트 막냉각 유량이 9% 이상일 때 추진제 혼합비에 영향을 받지 않았다.

PECVD에 의한 OLED 소자의 Thin Film Passivation 특성 (Characterization of Thin Film Passivation for OLED by PECVD)

  • 김관도;장석희;김종민;장상목
    • Korean Chemical Engineering Research
    • /
    • 제50권3호
    • /
    • pp.574-581
    • /
    • 2012
  • OLED 소자는 수분과 산소의 침투에 의하여 유기물이 열화되어 수명이 감소하는 문제점을 가지고 있다. 이러한 문제점을 해결하기 위해서 OLED 소자의 봉지 기술이 최근 연구되고 있다. 현재 유리나 금속 용기를 이용하여 캡슐화 하는 방법이 널리 사용되고 있지만 이러한 방법으로는 유연한(flexible) 소자의 구현이 어렵기 때문에 이를 대체할 수 있는 기술들이 연구되고 있다. 박막 필름을 이용한 OLED의 봉지 기술은 유연한 디스플레이에 적용할 수 있는 기술로 사용될 수 있다. 본 연구에서는 치밀하고 결함이 없는 패시베이션(passivation) 박막을 형성하기 위해서 상온에서 증착이 가능한 PECVD를 이용한 무기 박막 증착 방법을 개발하고 증착 조건과 구조에 따른 OLED의 특성 변화를 분석하였다. 하나의 시스템에서 in-situ로 패시베이션할 수 있는 시스템 및 공정을 구축하였으며 단일 무기 박막의 WVTR(Water Vapor Transmission Rate) 값을 $1{\times}10^{-2}g/m^2{\cdot}day$ 이하로 확보하였고 제작된 박막을 패시베이션막으로 유연한 디스플레이에 적용할 수 있는 가능성을 제시하였다.

Water-cyclone 장치의 미세입자, 기체상 오염 물질 처리 방법 연구 및 실험적 검증 (Experimental study and Verification of Fine Particles and Gaseous Pollutants Removal on Water-cyclone System)

  • 권성안;이상준
    • 한국산업융합학회 논문집
    • /
    • 제17권1호
    • /
    • pp.15-19
    • /
    • 2014
  • Recently, cyclone is used to collect fine particles in various industrial precesses, but many studies are undergoing because of cyclone's low collection efficiency. Thus, we have developed water-cyclone which minimizes disadvantages of existing conventional cyclone and designed 3 different stages depending on precessing materials. Stage 1 collects particles by using principles of conventional cyclone. Stage 2 processes acid gases by extending contact time with water film through vortex movement. Stage 3 processes uncollected substances in stage 1 and 2. Hence, we evaluate water-cyclone by experimental verification.

고온벽과 충돌하는 나노유체 액적 거동에 관한 연구 (A Study on the Behavior of Nano-fluid Droplet Impacting Upon a Hot Surface)

  • 김으뜸;박인한;배녹호;강보선
    • 한국분무공학회지
    • /
    • 제20권1호
    • /
    • pp.7-13
    • /
    • 2015
  • In this study, the behavior of water or nanofluid droplets impacting upon a hot surface was investigated by visualization of impacting phenomena with time-delayed photographic technique. Changing the mass ratio of nanofluid and the temperature of the heated surface, the characteristics of the spreading behavior and the diameter of spreading liquid film was compared between water and nanofluid droplets. The impacting droplet spreaded as a liquid film after impact and nanofluid droplets spreaded more widely than water droplets. After reaching the maximum diameter, water droplets shrinked more than nanofluid droplets. Based on this, the heat transfer area from a hot surface to impacting nanofluid droplets would be wider than that of impacting water droplets. Considering individual impacting droplet only, spray cooling using nanofluid would be better than using water.

불포화 토양내에서 가스상 오존 이동특성에 대한 Multiphase liquids의 영향

  • 정해룡;최희철
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 총회 및 춘계학술발표회
    • /
    • pp.124-127
    • /
    • 2003
  • Laboratory scale experiments on in-situ ozonation were carried out to delineate the effects of liquid phases, such as soil water and nonaqeous phase liquid (NAPL) on the transport of gaseous ozone in unsaturated soil. Soil water enhanced the transport of ozone due to water film effect, which prevent direct reaction between soil particles and gaseous ozone, and increased water content reduced the breakthrough time of ozone because of increased average linear velocity of ozone and decreased air-water interface area. Diesel fuel as NAPL also played a similar role with water film, so the breakthrough time of ozone in diesel-contaminated soil was significantly reduced compared with uncontaminated soil. However, ozone breakthrough time was retarded with increased diesel concentration, because of high reactivity of diesel fuel with ozone. In multiphase liquid system of unsaturated soil, the ozone transport was mainly Influenced by nonwetting fluid, diesel fuel in this study.

  • PDF