• Title/Summary/Keyword: Water ecology

Search Result 2,293, Processing Time 0.036 seconds

Growth Evaluation of 10 Cultivars of Creeping Bentgrass in Salt Affected Environment (염해지에서 크리핑벤트그래스 10개 품종의 생육 비교)

  • Kim, Jun-Beom;Yang, Geun-Mo;Choi, Joon-Soo
    • Asian Journal of Turfgrass Science
    • /
    • v.22 no.2
    • /
    • pp.149-160
    • /
    • 2008
  • This study was carried out to examine the growth performance of 10 cultivars of creeping bentgrass under salt injury in Seo-san reclaimed area. Turfgrass performance studies included 10 creeping bentgrass cultivars (T-1, L-93, Penn A1, Pennlinks II, Seaside II, Declaration, Penn A4, Crenshaw, Dominant, and Penncross). Ten creeping bentgrass cultivars were grown on a USGA recommended research green. Plots were seeded on May 31, 2006 at the rate of $7\;g{\cdot}m^{-1}$. Electric conductivities of irrigation water (ECw) and soil (ECe) were ranged from 0.28 to $3.3\;d\;S{\cdot}m^{-1}$ and from 0.25 to $3.5\;d\;S{\cdot}m^{-1}$ respectively. Leaf color, turf quality, coverage rate, and growth rate were checked under the salty condition in reclaimed land for 2 year. Creeping bentgrass cultivars of T-1, Penn links, and Crenshaw presented dark green color and Penn A1, Declaration showed lighter green color. Penn A1, Penn A4 and L-93 exhibited the highest overall turfgrass quality. Average visual coverage was 75.3% after eleven weeks after seeding. Dominant, L-93, and Penn A1 resulted in higher visual coverage compared to the other cultivars. There was no difference in density among cultivars at 1 year after establishment. However, Declaration, Penn A1, T-1, and L-93 showed higher density compared to the other cultivars at 2 years after seeding. Creeping bentgrass showed different quality, density and color in salty soil (ECe: $0.25-3.5\;d\;S{\cdot}m^{-1}$) and from application of salty irrigation water (ECw: $0.28-3.3\;d\;S{\cdot}m^{-1}$) conditions. These results will be useful where selecting green cultivars for the golf courses in reclaimed land area.

Beneficial Effect of an Agar Mask against Skin Damage Induced by UV Exposure in SKH-1 Hairless Mice (UV조사에 의해 유발된 SKH-1 hairless 마우스의 피부노화에 미치는 한천마스크의 개선효과)

  • Song, Bo Ram;Kim, Ji Eun;Yun, Woo Bin;Lee, Mi Rim;Choi, Jun Young;Park, Jin Ju;Kim, Dong Seob;Lee, Chung Yeoul;Lee, Hee Seob;Lim, Yong;Jung, Min Wook;Kim, Bae Hwan;Hwang, Dae Youn
    • Journal of Life Science
    • /
    • v.27 no.9
    • /
    • pp.975-985
    • /
    • 2017
  • To investigate the beneficial effects of an agar gel mask (AGM) on UV-induced photoaging, SKH-1 hairless mice were treated with a topical application of AGM and an AGM dipped in essence (AGMdE). The mice were divided into an no radiation group, UV + AGM, UV + AGMdE, and UV + vehicle (PBS) treatment groups. Alterations in skin wrinkles, skin phenotype, histological structures, oxidative status, and toxicity were then evaluated during 4 weeks of exposure. The topical application of AGM and AGMdE inhibited wrinkle formation, suppressed the erythema index, prevented transepidermal water loss, and enhanced skin hydration. In addition, epidermal thickness recovered to a similar level as that in the no irradiation group in the UV + AGM and UV + AGMdE treatment groups compared with the UV + vehicle (distilled water) group. Furthermore, the expression levels of matrix metalloproteinase-1 (MMP-1) and tyrosinase were reduced in the UV + AGM and UV + AGMdE treatment groups, although the highest level varied. Moreover, superoxide dismutase (SOD) activity was significantly lower in the UV + AGM and UV + AGMdE treatment groups as compared with the UV + vehicle group. No significant alterations induced by most toxic compounds were measured in serum biochemical markers and liver and kidney histological features of the UV + AGM and UV + AGMdE treatment groups. These results suggest that AGM may protect against skin aging by regulating skin morphology, histopathological structures, and oxidative conditions.

An Ecological Aesthetics and Symbolism of the Seonghyelsa Nahanjeon Floral Lattice with Patterns of Lotus Pond Scenery (연지(蓮池)로 본 성혈사 나한전 꽃살문양의 생태미학과 상징성)

  • Rho, Jae-Hyun;Lee, Da-Young;Choi, Seung-Hee
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.36 no.3
    • /
    • pp.160-171
    • /
    • 2018
  • This study aims to find an original form of temple flower decoration patterns, considering floral lattice pattern as a view element composing temple landscape. To that end, we analyzed and interpreted the form and symbol expressed in the floral lattice pattern at Nahanjeon of Seonghyel Temple at Yeongju, Gyeongsangbukdo. The front side of Nahanjeon windows shows a sculpture with 176 pure patterns in a form where two squares are in sequence. The basic concept of main front door (the inner gate of Nahanjeon) frames is considered the design language of lotus pond that symbolizes "square land" in traditional gardens. The four leaf clover and arrowhead are water plants discovered in areas nearby ponds, which are a realistic expression conforming to the water ecology of lotus pond. The lotus, which is the most important plant at the main front door, indicates purity, a non-stained state, and the world of the lotus sanctuary, which is the land of blissful happiness in Buddhism. The lotus expressed in the floral lattice pattern is spread in a diverse form, containing the features of creation and destruction, showing the landscape character of the "One Body of Buddha and Lotus". The expression of flying birds such as kingfishers and egrets is an ecologically aesthetic idea to infuse dynamism and vitality into a seemingly static aquatic ecosystem. The floral lattice pattern contains lotus pond scenery showing symbiosis of animals(i.e., dragons, frogs, crabs, fishes, egrets, wild geese, and kingfishers) and plants(i.e., four leaf clovers and arrowheads), which are symbols of relief faith for longevity, wealth, preciousness, and many sons. The pattern is not just an ecological aesthetic expression but a holistic harmony of ecological components such as growth and disappearance of lotus and its leaves, fitting habitats, symbiosis, and food chain.

Relationship between Limnological Characteristics and Algal Bloom in Lake-type and River-Type Reservoirs, Korea (호소형 및 하천형 댐 호의 육수학적 특성과 조류발생과의 상관관계)

  • Kim, Jong-Min;Heo, Seong-Nam;Noh, Hye-Ran;Yang, Hee-Jeong;Han, Myung-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.2 s.103
    • /
    • pp.124-138
    • /
    • 2003
  • This paper aimed to analyze the relationship between alga3 bloom patterns and hydrological, limnological data which were collected from major reservoirs in Korea for 8 years (1990${\sim}$1997). Water temperature of river-type reservoirs showed wider seasonal fluctuations than that of lake-type. pH of lake-type reservoirs was low in winter season but high in summer season. In contrast, river-type reservoirs showed high pH in spring and autumn seasons as well, and very low in summer season. COD of lake-type reservoirs and Paldang reservoir was lower (2${\sim}$3 mg/L) than that of Geumgang and Nagdonggang reservoirs (6${\sim}$9 mg/L). Dissolved oxygen (DO) of river-type reservoirs was higher than that of lake-type reservoirs. Seasonal fluctuation pattern of DO saturation in river-type reservoirs was high (80 ${\sim}$100%) and remained relatively constant whereas lake-type reservoirs showed the highest level (93%) in late spring or early summer, which gradually decreased entering winter season(46${\sim}$06%). And monthly variation of DO saturation showed inverse proportion to water volume in lake-type reservoirs. Nutrients concentration in river-type lake is higher than lake-type. Seasonal fluctuation of nutrients (T-N, T-P) in lake-type reservoirs was relatively small than that of river-type reservoirs. Annual mean N/P mass ratio of lake-type reservoirs was higher than that of river-type. Transparency tended to related with the suspended solid concentration in river-type reservoirs. Algal bloom of lake-type and river-type reservoirs occurred at any time except rainfall and winter periods. And it dominated in summer and early autumn, respectively. Algal bloom of river-type reservoirs was higher than that of lake-type. Relationship between rainfall and chlorophyll- a in lake-type reservoirs was relatively high, however river-type reservoirs showed insignificant.

Introduction of Kjeldahl Digestion Method for Nitrogen Stable Isotope Analysis (δ15N-NO3 and δ15NNH4) and Case Study for Tracing Nitrogen Source (Kjeldahl 증류법을 활용한 질산성-질소 및 암모니아성-질소 안정동위원소비 분석 및 질소오염원 추적 사례 연구)

  • Kim, Min-Seob;Park, Tae-Jin;Yoon, Suk-Hee;Lim, Bo-La;Shin, Kyung-Hoon;Kwon, Oh-Sang;Lee, Won-Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.3
    • /
    • pp.147-152
    • /
    • 2015
  • Nitrogen (N) loading from domestic, agricultural and industrial sources can lead to excessive growth of macrophytes or phytoplankton in aquatic environment. Many studies have used nitrogen stable isotope ratios to identify anthropogenic nitrogen in aquatic systems as a useful method for studying nitrogen cycle. In this study to evaluate the precision and accuracy of Kjeldahl processes, two reference materials (IAEA-NO-3, N-1) were analyzed repeatedly. Measured the ${\delta}^{15}N-NO_3$ and ${\delta}^{15}N-NH_4$ values of IAEA-NO-3 and IAEA-N-1 were $4.7{\pm}0.2$‰ and $0.4{\pm}0.3$‰, respectively, which are within recommended values of analytical uncertainties. Also, we investigated spatial patterns of ${\delta}^{15}N-NO_3$ and ${\delta}^{15}N-NH_4$ in effluent plumes from a waste water treatment plant in Han River, Korea. ${\delta}^{15}N-NO_3$ and ${\delta}^{15}N-NH_4$ values are enriched at downstream areas of water treatment plant suggesting that dissolved nitrogen in effluent plumes should be one of the main N sources in those areas. The current study clarifies the reliability of Kjeldahl analytical method and the usefulness of stable isotopic techniques to trace the contamination source of dissolved nitrogen such as nitrate and ammonia.

Swimming Performance Evaluation of Four Freshwater Fish Species from the South Korea (국내에 서식하는 담수어류 4종에 대한 유영능력 평가)

  • Misheel, Bold;Kim, Kyu-Jin;Min, Kun-Woo;Jang, Min-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.2
    • /
    • pp.118-125
    • /
    • 2019
  • Swimming performance of fish is an important factor in the survival of fish. Also, swimming performance of fish is used in the form of habitat, or as a condition to consider when creating a fish ladder. However in Korea, researches in swimming performance of Korean freshwater fish were scarce and inadequate in some part, thus fish ladders were installed without considering their swimming performance. Therefore, in this study, we measured swimming performance of 4 Korean freshwater fish species to consider importance of swimming performance test. The fish used in this study were Carassius auratus, Zacco koreanus, Gnathopogon strigatus, Acheilognathus lanceolata intermedia species which was collected during October to November, 2018 at Geum River, and measurement for swimming speed of each fish was done by using $Loligo^{(R)}$ System, swim tunnel respirometer in January to February of 2019. The average value of the burst critical swimming speed ($U_{crit}$) for each species was $0.8{\pm}0.04m\;s^{-1}$ for C. auratus, $0.77{\pm}0.04m\;s^{-1}$ for Z. koreanus, $0.95{\pm}0.04m\;s^{-1}$ for G. strigatus, $0.73{\pm}0.03m\;s^{-1}$ for A. lanceolata intermedia and the average value of prolonged critical swimming speed was $0.54m\;s^{-1}$ for C. auratus, $0.67m\;s^{-1}$ for Z. koreanus, $0.7m\;s^{-1}$ for G. strigatus, $0.54m\;s^{-1}$ for A. lanceolata intermedia. Since the fish used in this experiment were collected from a small part of the water system in Korea and there were only 4 species, they were not enough to represent the species that inhabit the entire Korean water system. It will be necessary to continue evaluating the swimming performance of other freshwater species in Korea.

Numerical analysis of morphological changes by opening gates of Sejong Weir (보 개방에 의한 하도의 지형변화 과정 수치모의 분석(세종보를 중심으로))

  • Jang, Chang-Lae;Baek, Tae Hyo;Kang, Taeun;Ock, Giyoung
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.8
    • /
    • pp.629-641
    • /
    • 2021
  • In this study, a two-dimensional numerical model (Nays2DH) was applied to analyze the process of morphological changes in the river channel bed depending on the changes in the amount of flooding after fully opening the Sejong weir, which was constructed upstream of the Geum River. For this, numerical simulations were performed by assuming the flow conditions, such as a non-uniform flow (NF), unsteady flows (single flood event, SF), and a continuous flood event (CF). Here, in the cases of the SF and CF, the normalized hydrograph was calculated from real flood events, and then the hydrograph was reconfigured by the peak flow discharge according to the scenario, and then it was employed as the flow discharge at the upstream boundary condition. In this study, to quantitatively evaluate the morphological changes, we analyzed the time changes in the bed deformation the bed relief index (BRI), and we compared the aerial photographs of the study area and the numerical simulation results. As simulation results of the NF, when the steady flow discharge increases, the ratio of lower width to depth decreases and the speed of bar migration increases. The BRI initially increases, but the amount of change decreased with time. In addition, when the steady flow discharge increases, the BRI increased. In the case of SF, the speed of bar migration decreased with the change of the flow discharge. In terms of the morphological response to the peak flood discharge, the time lag also indicated. In other words, in the SF, the change of channel bed indicates a phase lag with respect to the hydraulic condition. In the result of numerical simulation of CF, the speed of bar migration depending on the peak flood discharges decreased exponentially despite the repeated flood occurrences. In addition, as in the result of SF, the phase lag indicated, and the speed of bar migration decreased exponentially. The BRI increased with time changes, but the rate of increase in the BRI was modest despite the continuous peak flooding. Through this study, the morphological changes based on the hydrological characteristics of the river were analyzed numerically, and the methodology suggested that a quantitative prediction for the river bed change according to the flow characteristic can be applied to the field.

Development of the Filterable Water Sampler System for eDNA Filtering and Performance Evaluation of the System through eDNA Monitoring at Catchment Conduit Intake-Reservoir (eDNA 포집용 채수 필터시스템 개발과 집수매거 취수지 내에서의 성능평가)

  • Kwak, Tae-Soo;Kim, Won-Seok;Lee, Sun Ho;Kwak, Ihn-Sil
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.4
    • /
    • pp.272-279
    • /
    • 2021
  • A pump-type eDNA filtering system that can control voltage and hydraulic pressure respectively has been developed, and applied a filter case that can filter out without damaging the filter. The filtering performance of the developed system was evaluated by comparing the eDNA concentration with the conventional vacuum-pressured filtering method at the catchment conduit intake reservoir. The developed system was divided into a voltage control (manual pump system) method and a pressure control (automatic pump system) method, and the pressure was measured during filtering and the pressure change of each system was compared. The voltage control method started with 65 [KPa] at the beginning of the filtering, and as the filtering time elapsed, the amount of filtrate accumulated in the filter increased, so the pressure gradually increased. As a result of controlling the pressure control method to maintain a constant pressure according to the designed algorithm, there was a difference in the width of the hydraulic pressure fluctuation during the filtering process according to the feedback time of the hydraulic pressure sensor, and it was confirmed that the pressure was converged to the target pressure. The filtering performance of the developed system was confirmed by measuring the eDNA concentration and comparing the voltage control method and the hydraulic control method with the control group. The voltage control method obtained similar results to the control group, but the hydraulic control method showed lower results than the control group. It is considered that the low eDNA concentration in the hydraulic control method is due to the large pressure deviation during filtering and maintaining a constant pressure during the filtering process. Therefore, rather than maintaining a constant pressure during filtering, it was confirmed that a voltage control method in which the pressure is gradually increased as the filtrate increases with the lapse of filtering time is suitable for collecting eDNA. As a result of comparing the average concentration of eDNA in lentic zone and lotic zone as a control group, it was found to be 96.2 [ng µL-1] and 88.4 [ng µL-1l], respectively. The result of comparing the average concentration of eDNA by the pump method was also high in the lentic zone sample as 90.7 [ng µL-1] and 74.8 [ng µL-1] in the lentic zone and the lotic zone, respectively. The high eDNA concentration in the lentic zone is thought to be due to the influence of microorganisms including the remaining eDNA.

Comparison of Microscopy and Pigment Analysis for Determination of Phytoplankton Community Composition: Application of CHEMTAX Program (식물플랑크톤 군집조성 파악을 위한 현미경관찰법과 지표색소분석법 비교 연구: CHEMTAX 프로그램 활용)

  • Kim, Dokyun;Choi, Jisoo;Oh, Hye-Ji;Chang, Kwang-Hyeon;Choi, Kwangsoon;Shin, Kyung-Hoon
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.4
    • /
    • pp.303-314
    • /
    • 2021
  • To understand how to efficiently observe the biomass and community of phytoplankton, phytoplankton sampling was carried out from June to October 2019 at the Yeongju dam sediment control reservoir(YJ) and Bohyeonsan dam reservoir(BH1 and BH2). The results derived from microscopic observation, such as the conventional phytoplankton qualitative/quantitative analysis, and from the CHEMTAX method based on the pigments, were compared. The relative contribution of phytoplankton, calculated by the microscopy and CHEMTAX methods, showed a significant difference in all four classes: cryptophyta, chlorophyta, cyanobacteria, and diatoms. In addition, the correlation between the two observation methods was poor. This might be caused by methodological differences in microscopy that do not consider the varying cell sizes among phytoplankton species. In this study, by converting the cells into carbon, the slope between both carbon biomasses based on microscopy and CHEMTAX was improved close to the 1 : 1 line, and the y-intercept was closer to 0 for cryptophyta and diatoms. For cyanobacteria, the slope increased, the y-intercept decreased, and the plot approached 1 : 1 although the correlation coefficients were not improved in all classes. The present study suggests that application of CHEMTAX based on pigment analysis could be a possible approach to efficiently determine the relative carbon proportions of individual classes of phytoplankton community composition.

Meiobenthic community structure in the coastal area of Hallyeohaesang National Park (한려해상국립공원 해역에 서식하는 중형저서동물의 계절별 군집 변동 특성)

  • Teawook Kang
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.2
    • /
    • pp.125-137
    • /
    • 2022
  • To assess the characteristics of meiofaunal community fluctuations related to environmental factors, seasonal surveys were conducted in the subtidal zone of Hallyeohaesang National Park. The average depth of the study area was about 20 m, and the average water temperature at the bottom was low in winter(11.33℃) and high in summer(17.95℃). The sedimentary particles mainly comprised silt and clay at most stations. The abundance of meiofauna ranged from 81.7 to 1,296.5 Inds. 10 cm-2, and the average abundance was 589.3 Inds. 10 cm-2. The average abundance of meiofauna in each season was the lowest at 416.5 Inds. 10cm-2 in winter and the highest at 704.5Inds.10 cm-2 in spring. The dominant taxa were nematodes (about 92%) and harpacticoids (about 5%). In the cluster analysis of meiofaunal communities, they were divided into four significant groups. The largest group mainly contained spring and summer samples, and contained stations with a high nematode density of over 500 Inds. 10 cm-2 and harpacticoids below 50 Inds. 10 cm-2 with a high composition ratio of nematodes. In the cluster analysis, no regional division was found between the stations, and it was thought to be divided by the seasons with high abundance according to seasonal variation and the composition ratio of nematodes and harpacticoids. In the Spearman rank correlation analysis, the density of total meiofauna and the most dominant taxa, nematodes, was not significantly related to environmental factors. However, the density of harpacticoids had a significant positive correlation with water depth and a negative correlation with sediment particle size.