• Title/Summary/Keyword: Water demand by use

Search Result 263, Processing Time 0.037 seconds

Material Properties of High-Strength Concrete Substituted Industrial Waste for Aggregate (잔골재와 굵은골재를 산업폐기물로 치환한 고강도 콘크리트의 재료적 특성에 관한연구)

  • Jeon So-Jin;Lee Woo-Jin;Kim Doo-Sick;Seo Soo-Yan;Yoon Seung-Joe
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.513-516
    • /
    • 2005
  • Previous study on recycled aggregate(RA) has largely been limited to the manufacture of nonstructural-grade concrete due to undesirable physical properties of them such as, high water absorption leading to high water demand of concrete. The restriction seriously limits its market and consequently diminishes the use of RA as a construction material. This paper presents the mechanical properties of recycled concrete substituted by both waste foundry sand(WFS) and recycled coarse aggregate replaced with fine and coarse aggregate concurrently. The result shows that the compressive and tensile strength decrease with the increment of substitution ratio of RA and WFS while bending strength of RA concrete increase.

  • PDF

Compensation Logics of Controller in Korean Standard Super Critical Once Through Boiler

  • Kim, Eun-Gee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.65.2-65
    • /
    • 2001
  • There are not only lots of controllers such as UMC(Unit Master Controller), BMC(Boiler Master Controller), Fuel Flow controller, Air flow controller, Feed water flow controller, S/H R/H Temperature controller and so on, but also compensation controller such as BTU compensator, Fuel/Water ratio controller and O2 Co controller to take automatic control in the super critical once through boiler. It is important to make complete automation of boiler to use the compensation controller like BTU compensator. For example, In case of some boiler condition, operator has to change combustion parameter for changing the coal, on the contrary BTU compensator can calculate set value of the fuel flow and reset the fuel flow demand by itself. This paper shows us the logic and instruction regarding compensation controller of boiler that can be operated automatically.

  • PDF

DYNAMIC MODELING AND ANALYSIS OF ALTERNATIVE FUEL CYCLE SCENARIOS IN KOREA

  • Jeong, Chang-Joon;Choi, Hang-Bok
    • Nuclear Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.85-94
    • /
    • 2007
  • The Korean nuclear fuel cycle was modeled by the dynamic analysis method, which was applied to the once-through and alternative fuel cycles. First, the once-through fuel cycle was analyzed based on the Korean nuclear power plant construction plan up to 2015 and a postulated nuclear demand growth rate of zero after 2015. Second, alternative fuel cycles including the direct use of spent pressurized water reactor fuel in Canada deuterium uranium reactors (DUPIC), a sodium-cooled fast reactor and an accelerator driven system were assessed and the results were compared with those of the once-through fuel cycle. The once-through fuel cycle calculation showed that the nuclear power demand would be 25 GWe and the amount of the spent fuel will be ${\sim}65000$ tons by 2100. The alternative fuel cycle analyses showed that the spent fuel inventory could be reduced by more than 30% and 90% through the DUPIC and fast reactor fuel cycles, respectively, when compared with the once-through fuel cycle. The results of this study indicate that both spent fuel and uranium resources can be effectively managed if alternative reactor systems are timely implemented along with the existing reactors.

The Evaluation of Groundwater Pumping Capacity at a Catchment Area with Interrelated Wells in Volcanic Island: II. With Consideration of Water Quality (상관우물들이 분포하는 화산섬 집수역에 대한 지하수 양수능의 평가 II. 수질(水質)을 고려한 경우)

  • Lee, Sunhoon;Machida, Isao;Imoto, Yukari
    • Journal of Environmental Impact Assessment
    • /
    • v.12 no.3
    • /
    • pp.199-209
    • /
    • 2003
  • The withdrawal method for protecting the uncontaminated part from the spread of contaminants was suggested by a simultaneous equation. The formulation of them is based upon the build up of the ridge part between the contaminated and uncontaminated parts that resulted from the efficient use of barrier wells. The quality in the withdrawn groundwater depends upon the heads at wells no. 5 and 6. The determination of pumping rates and qualities with changing the heads at wells no. 5 and 6 should be given by considering the demand for water use and the capacity and cost for removing the contained contaminants. The results of this study should be used in taking a plan for supplying water use as well as preventing the spread of contaminants from some known contaminated sources.

Regional Development And Dam Construction in Korea (한국의 지역개발과 댐건설)

  • 안경모
    • Water for future
    • /
    • v.9 no.1
    • /
    • pp.38-42
    • /
    • 1976
  • Because of differences in thoughts and ideology, our country, Korea has been deprived of national unity for some thirty years of time and tide. To achieve peaceful unification, the cultivation of national strength is of paramount importance. This national strength is also essential if Korea is to take rightful place in the international societies and to have the confidence of these societies. However, national strength can never be achieved in a short time. The fundamental elements in economic development that are directly conducive to the cultivation of national strength can be said to lie in -a stable political system, -exertion of powerful leadership, -cultivation of a spirit of diligence, self-help and cooperation, -modernization of human brain power, and -establishment of a scientific and well planned economic policy and strong enforcement of this policy. Our country, Korea, has attained brilliant economic development in the past 15 years under the strong leadership of president Park Chung Hee. However, there are still many problems to be solved. A few of them are: -housing and home problems, -increasing demand for employment, -increasing demand for staple food and -the need to improve international balance of payment. Solution of the above mentioned problems requires step by step scientific development of each sector and region of our contry. As a spearhead project in regional development, the Saemaul Campaign or new village movement can be cited. The campaign is now spreading throughout the country like a grass fire. However, such campaigns need considerable encouragement and support and the means for the desired development must be provided if the regional and sectoral development program is to sucdceed. The construction of large multipurpose dams in major river basin plays significant role in all aspects of national, regional and sectoral development. It ensures that the water resource, for which there is no substitute, is retained and utilized for irrigation of agricultural areas, production of power for industry, provision of water for domestic and industrial uses and control of river water. Water is the very essence of life and we must conserve and utilize what we have for the betterment of our peoples and their heir. The regional and social impact of construction of a large dam is enormous. It is intended to, and does, dras tically improve the "without-project" socio-economic conditions. A good example of this is the Soyanggang multipurpose dam. This project will significantly contribute to our national strength by utilizing the stored water for the benefit of human life and relief of flood and drought damages. Annual average precipitation in Korea is 1160mm, a comparatively abundant amount. The catchment areas of the Han River, Keum River, and Youngsan River are $62,755\textrm{km}^2$, accounting for 64% of the national total. Approximately 62% of the national population inhabits in this area, and 67% of the national gross product comes from the area. The annual population growth rate of the country is currently estimated at 1.7%, and every year the population growth in urban area increases at a rising rate. The population of Seoul, Pusan, and Taegu, the three major cities in Korea, is equal to one third of our national total. According to the census conducted on October 1, 1975, the population in the urban areas has increased by 384,000, whereas that in rural areas has decreased by 59,000,000 in the past five years. The composition of population between urban and rural areas varied from 41%~59% in 1959 to 48%~52% in 1975. To mitigate this treand towards concentration of population in urban areas, employment opportunities must be provided in regional and rural areas. However, heavy and chemical industries, which mitigate production and employment problems at the same time, must have abundant water and energy. Also increase in staple food production cannot be attained without water. At this point in time, when water demand is rapidly growing, it is essential for the country to provide as much a reservoir capacity as possible to capture the monsoon rainfall, which concentarated in the rainy seaon from June to Septesmber, and conserve the water for year round use. The floods, which at one time we called "the devil" have now become a source of immense benefit to Korea. Let me explain the topographic condition in Korea. In northern and eastern areas we have high mountains and rugged country. Our rivers originate in these mountains and flow in a general southerly or westerly direction throught ancient plains. These plains were formed by progressive deposition of sediments from the mountains and provide our country with large areas of fertile land, emminently suited to settlement and irrigated agricultural development. It is, therefore, quite natural that these areas should become the polar point for our regional development program. Hower, we are fortunate in that we have an additional area or areas, which can be used for agricultural production and settlement of our peoples, particularly those peoples who may be displaced by the formation of our reservoirs. I am speaking of the tidelands along the western and southern coasts. The other day the Ministry of Agriculture and Fishery informed the public of a tideland reclamation of which 400,000 hectares will be used for growing rice as part of our national food self-sufficiency programme. Now, again, we arrive at the need for water, as without it we cannot realize this ambitious programme. And again we need those dams to provide it. As I mentioned before, dams not only provide us with essential water for agriculture, domestic and industrial use, but provide us with electrical energy, as it is generally extremely economical to use the water being release for the former purposes to drive turbines and generators. At the present time we have 13 hydro-electric power plants with an installed capacity of 711,000 kilowatts equal to 16% of our national total. There are about 110 potential dams ites in the country, which could yield about 2,300,000 kilowatts of hydro-electric power. There are about 54 sites suitable for pumped storage which could produce a further 38,600,000 kilowatts of power. All available if we carefully develop our water resources. To summarize, water resource development is essential to the regional development program and the welfare of our people, it must proceed hand-in-hand with other aspects of regional development such as land impovement, high way extension, development of our forests, erosion control, and develop ment of heavy and chemical industries. Through the successful implementation of such an integrated regional development program, we can look forward to a period of national strength, and due recognition of our country by the worlds societies.

  • PDF

Design of Water Resource Planning System Utilizing Special Features in Mathematical Programming Data Structure (수리계획 모형 자료구조를 활용한 수자원 운영 계획 시스템의 설계)

  • Kim, Jae-Hee;Park, Youngjoon;Kim, Sheung-Kown
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.160-163
    • /
    • 2000
  • Due to the complexities of the real-world system, a water resource management program has to deal with various types of data. It appears that management personnel who has to use the program usually suffers from the technical burdens of handling large amount of data and understanding the optimization theory when they try to interpret the results. By combining the capabilities of database technology and modeling technique with optimization procedure we can develop a reliable decision supporting tool for multi-reservoir operation planning, which yields operating schedule for each dam in a river basin. We introduce two special data handling methodology for the real world application. First, by treating dams, hydro-electric power generating facilities and demand sites as separate database tables, the proposed data handling scheme can be applied to general water resource system in Korea. Second, by assigning variable names using predetermined key words, we can save searching time for identifying the moaning of the variables, so that we can quickly save the results of the optimization run to the database.

  • PDF

Estimating Paddy Rice Evapotranspiration of 10-Year Return Period Drought Using Frequency Analysis (빈도 분석법을 이용한 논벼의 한발 기준 10년 빈도 작물 증발산량 산정)

  • Yoo, Seung-Hwan;Choi, Jin-Yong;Jang, Min-Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.3
    • /
    • pp.11-20
    • /
    • 2007
  • Estimation of crop consumptive use is a key term of agricultural water resource systems design and operation. The 10-year return period drought has special aspects as a reference period in design process of irrigation systems in terms of agricultural water demand analysis so that crop evapotranspiration (ETc) about the return period also has to be analyzed to assist understanding of crop water requirement of paddy rice. In this study, The ETc of 10-year return period drought was computed using frequency analysis by 54 meteorological stations. To find an optimal probability distribution, 8 types of probability distribution function were tested by three the goodness of fit tests including ${\chi}^2$(Chi-Square), K-S (Kolmogorov-Smirnov) and PPCC (Probability Plot Correlation Coefficient). Optimal probability distribution function was selected the 2-parameter Log-Normal (LN2) distribution function among 8 distribution functions. Using the two selected distribution functions, the ETc of 10-year return period drought was estimated for 54 meteorological stations and compared with prior study results suggested by other researchers.

Analysis of the Linkage Effect by Component Technology in Low Impact Development Facilities (저영향개발 시설의 요소기술별 연계 효과 분석)

  • Baek, Jongseok;Lee, Sangjin;Shin, Hyunsuk;Kim, Jaemoon;Kim, Hyungsan
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.1
    • /
    • pp.35-42
    • /
    • 2019
  • Urbanization has led to extreme changes in land use on urban watersheds. Most cities are becoming residential, commercial and industrial areas, making infiltration and storage of rainfall less favorable. The demand for LID (Low Impact Development) technology is increasing in order to mitigate this water cycle distortion and return to existing hydrological conditions. The LID technique is effective in reducing runoff by permeating the urban impervious area. However, considering the limit of the installation area and the financial requirement of the installation, there is not much research on the linkage of each LID component technology for optimum efficiency according to the appropriate scale. In this study, the effects of the LID facilities applied to the target site were simulated using the SWMM model, suggesting the optimal linkage method considering interconnectivity, and applying the effects as an existing installation of individual facilities. The water balance at the time of application of the LID technology, short-term and long-term rainfall event were compared. Also, the individual application and the linkage application were compared with each other. If each component technology has sufficient processing size, then linkage application is more effective than individual application.

An Investigation on Quantity of Unused Energy Using Temperature Difference Energy as Heat Source and Its Availability (온도차에너지를 열원으로 하는 미활용에너지의 부존량과 이용가능성에 관한 조사연구)

  • 박준택;장기창
    • Journal of Energy Engineering
    • /
    • v.11 no.2
    • /
    • pp.106-113
    • /
    • 2002
  • While the demand for energy has shown a sharp increase recently, the supply seems to be limited by the fact that the conventional fossil fuel energy or nuclear energy has its own environmental problems such as, for example, global warming or nuclear waste disposal. To overcome such limited supply of energy, the utilization of natural thermal energy such as river water and sea water as well as treated sewage can be a substantial supplement. The potential use of the unused energy has become more and more feasible these days as the heat pump technology has been advanced. In the present study, the unused energy reserves are estimated on regional and monthly basis for each resource based on the method developed here in order to establish the base data for its utilization. The potential use of the unused energy is also discussed.

Low-flow simulation and forecasting for efficient water management: case-study of the Seolmacheon Catchment, Korea

  • Birhanu, Dereje;Kim, Hyeon Jun;Jang, Cheol Hee;ParkYu, Sanghyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.243-243
    • /
    • 2015
  • Low-flow simulation and forecasting is one of the emerging issues in hydrology due to the increasing demand of water in dry periods. Even though low-flow simulation and forecasting remains a difficult issue for hydrologists better simulation and earlier prediction of low flows are crucial for efficient water management. The UN has never stated that South Korea is in a water shortage. However, a recent study by MOLIT indicates that Korea will probably lack water by 4.3 billion m3 in 2020 due to several factors, including land cover and climate change impacts. The two main situations that generate low-flow events are an extended dry period (summer low-flow) and an extended period of low temperature (winter low-flow). This situation demands the hydrologists to concentrate more on low-flow hydrology. Korea's annual average precipitation is about 127.6 billion m3 where runoff into rivers and losses accounts 57% and 43% respectively and from 57% runoff discharge to the ocean is accounts 31% and total water use is about 26%. So, saving 6% of the runoff will solve the water shortage problem mentioned above. The main objective of this study is to present the hydrological modelling approach for low-flow simulation and forecasting using a model that have a capacity to represent the real hydrological behavior of the catchment and to address the water management of summer as well as winter low-flow. Two lumped hydrological models (GR4J and CAT) will be applied to calibrate and simulate the streamflow. The models will be applied to Seolmacheon catchment using daily streamflow data at Jeonjeokbigyo station, and the Nash-Sutcliffe efficiencies will be calculated to check the model performance. The expected result will be summarized in a different ways so as to provide decision makers with the probabilistic forecasts and the associated risks of low flows. Finally, the results will be presented and the capacity of the models to provide useful information for efficient water management practice will be discussed.

  • PDF