• 제목/요약/키워드: Water demand

검색결과 1,838건 처리시간 0.03초

생활용수 수요추정방법 개선에 의한 하수발생량 예측에 관한 연구 (A study on the prediction of the generation of domestic sewage by improvement of water demand estimation)

  • 김재윤
    • 한국환경과학회지
    • /
    • 제11권12호
    • /
    • pp.1275-1279
    • /
    • 2002
  • This study was performed to improve water demand estimation and analize correlation between generation of domestic sewage and domestic water use. To improve the prediction of water demand estimation, new water demand equation was developed. The results is as follows. $InQ_t = {\beta}_0+{\beta}_1InP_t+{\beta}_2InY_t+{\beta}_3InH_t+{varepsilon}_t$By using the statistical analysis of the "generation of domestic sewage" and "domestic water use", the regression equation between them is formed. The result is as follows. Generation of domestic sewage : 0.8487 $\times$ Domestic water use + 684.57 ($R^2$= 0.972)>$R^2$= 0.972)

시스템 다이나믹스를 이용한 도시 물수요 장기 예측의 동적 모델 연구 (Dynamic Model of a Long-term Water Demand Using System Dynamics)

  • 이상은;최동진;박희경
    • 상하수도학회지
    • /
    • 제21권1호
    • /
    • pp.75-82
    • /
    • 2007
  • When one forecasts urban water demand in a long-term, multivariate model can give more benefits than per capita requirement model. However, the former has shortcomings in that statistically high explanatory power cannot be obtained well, and change in customer behavior cannot be considered. If the past water consumption effects the future water demand, dynamic model may describe real water consumption data better than static model, i.e. the existing multivariate model. On these grounds, this study built dynamic model using system dynamics. From a case study in Seoul and Busan city, dynamic model was expected to forecast water demand more descriptively and reliably.

물 수요함수 추정과 지역 물 관리 정책 연구 (A Study on Estimating Regional Water Demand and Water Management Policy)

  • 임동순
    • 디지털융복합연구
    • /
    • 제16권7호
    • /
    • pp.1-8
    • /
    • 2018
  • 우리나라는 성공적인 물 관리를 위하여 1980년대 이후 상수도 보급을 중심으로 한 공급정책이 성공적으로 진행되었고, 1990년대 이후 물 가격이 상수도 수요에 미치는 영향 등 수요관리에 대한 정책이 이어지고 있다. 최근 들어 물 가격결정과 효율적인 수자원 관리에 논의가 부각되고 있다. 본 논문은 부산지역을 대상으로 물수요 관리의 핵심 변수로서 물 가격의 결정 요인과 가격 수준 설정에 대한 논의를 수요함수추정을 통하여 분석한다. 주요 변수로는 총 인구, 수도 요금, 소득, 가구 수, 에너지 가격으로 선정되었고, 시계열 자료의 특성을 고려한 초월대수함수 모형을 설정하여 분석하였다. 분석결과에 따르면 물 수요는 인구, 소득 등 실물 경제변수에는 양의 효과를, 물 가격, 에너지 가격 등 가격변수에는 음의 효과를 나타냈다. 향후 지역별 미래 물 소비량에 따른 공급 능력 확보와 지속적인 물 절약을 위하여 수도 요금 조정이 효율적 정책방안으로 판단되며, 디지털 정보의 이용 확대 등 보완적 수자원 관리 정책도 동시에 요구된다. 또한 용도별, 지역별, 시간별로 세분화된 자료를 구축하고, 정교한 계량분석모형을 이용한 연구가 요청된다.

Sustainable Management of Irrigation Water Withdrawal in Major River Basins by Implementing the Irrigation Module of Community Land Model

  • Manas Ranjan Panda;Yeonjoo Kim
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.185-185
    • /
    • 2023
  • Agricultural water demand is considered as the major sector of water withdrawal due to irrigation. The majority part of the global agricultural field depends on various irrigation techniques. Therefore, a timely and sufficient supply of water is the most important requirement for agriculture. Irrigation is implemented in different ways in various land surface models, it can be modeled empirically based on observed irrigation rates or by calculating water supply and demand. Certain models can also calculate the irrigation demand as per the soil water deficit. In these implementations, irrigation is typically applied uniformly over the irrigated land regardless of crop types or irrigation techniques. Whereas, the latest version of Community Land Model (CLM) in the Community Terrestrial Systems Model (CTSM) uses a global distribution map of irrigation with 64 crop functional types (CFTs) to simulate the irrigation water demand. It can estimate irrigation water withdrawal from different sources and the amount or the areas irrigated with different irrigation techniques. Hence, we set up the model for the simulation period of 16 years from 2000 to 2015 to analyze the global irrigation demand at a spatial resolution of 1.9° × 2.5°. The simulated irrigation water demand is evaluated with the available observation data from FAO AQUASTAT database at the country scale. With the evaluated model, this study aims to suggest new sustainable scenarios for the ratios of irrigation water withdrawal, high depending on the withdrawal sources e.g. surface water and groundwater. With such scenarios, the CFT maps are considered as the determining factor for selecting the areas where the crop pattern can be altered for a sustainable irrigation water management depending on the available withdrawal sources. Overall, our study demonstrate that the scenarios for the future sustainable water resources management in terms of irrigation water withdrawal from the both the surface water and groundwater sources may overcome the excessive stress on exploiting the groundwater in major river basins globally.

  • PDF

토지이용 변화를 고려한 제주도 권역별 미래 농업용수 수요량 추정 (Estimation of Regional Future Agricultural Water Demand in Jeju Island Considering Land Use Change)

  • 송성호;명우호;안중기;장중석;백진희;정차연
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제23권1호
    • /
    • pp.92-105
    • /
    • 2018
  • In this study, the projected land use area in 2030 for major crop production was estimated in Jeju Island using land cover map, and corresponding agricultural water demand for 40 sub-regions was quantitatively assessed using the future climate change scenario (RCP 4.5). Estimated basic unit of water demand in 2030 was the highest in the western region, and the lowest in the eastern region. Monthly maximum agricultural water demand analysis revealed that water demand in August of 2030 substantially increased, suggesting the climate of Jeju Island is changing to a subtropical climate in 2030. Agricultural water demand for sub-region in 2030 was calculated by multiplying the target area of the water supply excluding the area not in use in winter season by the basic unit of water demand, and the maximum and minimum values were estimated to be $306,626m^3/day$ at Seogwipo downtown region and $77,967m^3/day$ at Hallim region, respectively. Consequently, total agricultural water demand in Jeju Island in 2030 was estimated to be $1,848,010m^3/day$.

제주도 권역별 농업용수 수요량 산정에 대한 고찰 (Estimation of Regional Agricultural Water Demand over the Jeju Island)

  • 최광준;송성호;김진성;임찬우
    • 한국환경과학회지
    • /
    • 제22권5호
    • /
    • pp.639-649
    • /
    • 2013
  • Over 96.2% of the agricultural water in Jeju Island is obtained from groundwater and there are quite distinct characteristics of agricultural water demand/supply spatially because of regional and seasonal differences in cropping system and rainfall amount. Land use for cultivating crops is expected to decrease 7.4% (4,215 ha) in 2020 compared to 2010, while market garden including various vegetable crop types having high water demand is increasing over the Island, especially western area having lower rainfall amount compared to southern area. On the other hand, land use for fruit including citrus and mandarin having low water demand is widely distributed over southern and northern part having higher rainfall amount. The agricultural water demand of $1,214{\times}10^3\;m^3/day$ in 2020 is estimated about 1.39 times compared to groundwater supply capacity of $874{\times}10^3\;m^3/day$ in 2010 with 42.4% of eastern, 103.1% of western, 61.9% of southern, and 77.0% of northern region. Moreover, net secured amount of agricultural groundwater would be expected to be much smaller due to regional disparity of water demand/supply, the lack of linkage system between the agricultural water supply facilities, and high percentage of private wells. Therefore, it is necessary to ensure the total net secured amount of agricultural groundwater to overcome the expected regional discrepancy of water demand and supply by establishing policy alternative of regional water supply plan over the Island, including linkage system between wells, water tank enlargement, private wells maintenance and public wells development, and continuous enlargement of rainwater utilization facilities.

정수장내 염소요구량 자동결정시스템 개발 (Development of Automatic Decision System for Chlorination Demand in Water Treatment Plant)

  • 오석영
    • 대한기계학회논문집B
    • /
    • 제26권6호
    • /
    • pp.757-764
    • /
    • 2002
  • Chlorination dosage in water treatment plant of field is determined by chlorination demand experiment through two or three hours after raw water was sampled in inflow. It is impossible to continuously control for real time because the sampled water is adapted chlorination dosage after water treatment process had been proceeded. Therefore in this study, we will design informal chlorination demand system, this designed system will be experimented as to water quality and accuracy of control in various conditions. Throughout these experimental results, we will revise the system and the revised system is enable to optimal control of chlorination dosage. Finally, we have developed chlorination demand system, which can automatically determination of chlorination dosage to be determined according to variety of raw water quality inflow in water treatment plant.

정수장내 염소요구량 자동결정시스템 개발 (Development of Automatic Decision System for Cholrination Demand in Water treatment Plant)

  • 오석영;이성룡
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.807-812
    • /
    • 2000
  • Chlorination dosage in water treatment plant of field is determined by chlorination demand experiment through two or three hours after raw water was sampled in inflow. It is impossible to continuously control fer real time because sampled water is adapted chlorination dosage after water treatment process had been proceeded. Therefore in this study, we will design informal chlorination demand system this designed system will be experimented as to water quality and accuracy of control in various conditions. Throughout these. experimental results, we will revise the system and revised system is enable to optimal control of chlorination dosage. Finally, We have developed chlorination demand system, which can automatically determination of chlorination dosage to be determined according to variety of raw water quality inflow in water treatment plant.

  • PDF

Prediction of Global Industrial Water Demand using Machine Learning

  • Panda, Manas Ranjan;Kim, Yeonjoo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.156-156
    • /
    • 2022
  • Explicitly spatially distributed and reliable data on industrial water demand is very much important for both policy makers and researchers in order to carry a region-specific analysis of water resources management. However, such type of data remains scarce particularly in underdeveloped and developing countries. Current research is limited in using different spatially available socio-economic, climate data and geographical data from different sources in accordance to predict industrial water demand at finer resolution. This study proposes a random forest regression (RFR) model to predict the industrial water demand at 0.50× 0.50 spatial resolution by combining various features extracted from multiple data sources. The dataset used here include National Polar-orbiting Partnership (NPP)/Visible Infrared Imaging Radiometer Suite (VIIRS) night-time light (NTL), Global Power Plant database, AQUASTAT country-wise industrial water use data, Elevation data, Gross Domestic Product (GDP), Road density, Crop land, Population, Precipitation, Temperature, and Aridity. Compared with traditional regression algorithms, RF shows the advantages of high prediction accuracy, not requiring assumptions of a prior probability distribution, and the capacity to analyses variable importance. The final RF model was fitted using the parameter settings of ntree = 300 and mtry = 2. As a result, determinate coefficients value of 0.547 is achieved. The variable importance of the independent variables e.g. night light data, elevation data, GDP and population data used in the training purpose of RF model plays the major role in predicting the industrial water demand.

  • PDF

논용수 수요량 산정을 중심으로 한 농업용수 수요량 산정방법의 개선 (Improvement of agricultural water demand estimation focusing on paddy water demand)

  • 박창근;황준식;서용원
    • 한국수자원학회논문집
    • /
    • 제53권11호
    • /
    • pp.939-949
    • /
    • 2020
  • 현재 농업환경 및 식생활 변화 등으로 인하여 농지 수요는 꾸준히 감소하고 있다. 이러한 현상과 맞물려 정부에서는 2019년 6월에 물관리기본법을 제정함으로써 지속가능한 통합 물 관리시대를 본격화 하고 있다. 따라서 효율적인 통합 물 관리를 실현하기 위해서는 61%라는 가장 많은 용수를 사용하고 있는 농업용수에 대한 면밀한 검토가 이루어져야 할 시점이다. 금회 연구에서는 현재 농업용수 사용량 현황을 분석함과 동시에 농업용수 중 67% ~ 87%의 비율을 차지하고 있는 논 용수 산정법을 검토한 후 문제점을 분석하였다. 논 용수 산정방법의 가장 큰 문제점은 잠재증발산량 산정식 선정에 있다. 현재 사용하고 있는 잠재증발산량 방법은 식량농업기구(Food and Agriculture Organization of the United Nationns: FAO)에서 권장하고 있는 Penman-Monteith 식이 아닌 과거부터 사용되고 있는 수정 Penman 식이다. 또한 실제 증발산량 산정의 주요 인자인 작물계수는 23년 전의 작물계수를 이용함으로써 현재 기후 및 작물품종 변화를 반영할 수 없다는 문제점을 가지고 있다. 전주기상청의 자료를 이용하여 Penman 및 Penman-Monteith 식을 비교한 결과 수정 Penman 식이 Penma-Monteith 식에 비하여 2배 이상의 큰 값을 보였다. 작물계수를 적용할 경우 증발산량이 높게 발생되는 5월 하순에서 8월 하순까지 두 산정방식에 의한 결과 차이가 크게 나타났다. 또한 전북 김제지역 4개 농업용 저수지 용수공급량 자료를 이용하여 실제 사용량과 산정된 농업용수 수요량을 비교 검토하였다. 잠재증발산량 뿐 아니라 담수심법에 따라 최적 수요량 산정방법에는 차이를 보였다.