• Title/Summary/Keyword: Water curtain cultivation

Search Result 25, Processing Time 0.025 seconds

Estimation of Groundwater Usage for Water Curtain Cultivation using a Rating Curve (수위-유량 관계곡선을 이용한 수막재배용 지하수 사용량 추정)

  • Lee, Bong-Joo;Kim, YongCheol;Cho, Byung-Wook;Yoon, Uk;Ha, Kyoolchul;Lee, Byeong-Dae;Moon, Sang-Ho;Yoon, Philsun;Kim, Sung-Yun
    • The Journal of Engineering Geology
    • /
    • v.25 no.1
    • /
    • pp.35-43
    • /
    • 2015
  • A method is proposed to estimate groundwater usage for water curtain cultivation (WCC) using a rating curve, and it is applied to field measurements of groundwater discharge used for WCC in Wangjeon-ri, Nonsan. During the winter season, the hydraulic components of irrigation ditches in the study area consist mainly of direct run-off and groundwater discharged from nearby pumping wells. Changes in stage of the ditches were monitored, and a baseflow separation method was applied to remove increments in stage due to direct run-off. The resulting records of stage were translated to groundwater discharge by applying the-stage-discharge relation. The estimated average groundwater discharge for the WCC in Wangjeon-ri was 10,900 m3/d or 420 m3/d/ha when the estimation is normalized by the total area for WCC facilities of this region. Applying this estimation (420 m3/d/ha) to the entire area of the WCC in Korea (10,746 ha),and considering the number of pumping days for the WCC (120 days/year), the total ground water usage for the WCC nation-wide is estimated to be 0.54 billion m3. This is equivalent to 32% of the total groundwater discharge for agricultural use in Korea (1.7 billon m3).

Change of Groundwater-Streamflow Interaction according to Groundwater ion in a Green House Land (비닐하우스 지역의 지하수 양수에 따른 지하수-하천수 상호 유동 변화 분석)

  • Kim, Nam Won;Lee, Jeong Woo;Chung, Il Moon;Kim, Chang Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.10
    • /
    • pp.1051-1067
    • /
    • 2012
  • Increased use of water curtain facilities to keep green house warm during winter cultivation has been known to cause excessive groundwater ion which might lead to decline of groundwater level, resulting in streamflow depletion. Therefore it is required to quantitatively assess the effects of groundwater ion on the streamflow depletion such as magnitude and extent. The objective of this study is to assess the change of stream-aquifer interaction according to groundwater ion near stream. To this end, a green house cultivation land in Sooha-ri, Sindun-myun, Icheon-si, Gyonggi-do was selected as a field experimental site, and monitoring wells were established near and within stream to observe the water level and temperature changes over a long period of time. From the observed water level and temperature data, it was found that the river reach of interest changed to a losing stream pattern during the winter cultivation season due to groundwater level decline around pumping wells near the stream. The continuous exchange rates between stream and aquifer were estimated by plugging the observed water level data series into the experimental relation between head difference and exchange rate, showing the streamflow depletion by 16% of the groundwater pumping rate in Feb, 2011.

Estimation of Heat Exchange Rate of Standing Column Well for Sustainable Groundwater Curtain for Greenhouse Heating (순환식 지하수 수막시스템 그린하우스 난방을 위한 스탠딩컬럼웰 열교환율 산정)

  • Byoung Ohan Shim;Seung Gyun Baek;Seonghoon Jeong
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.20 no.2
    • /
    • pp.11-23
    • /
    • 2024
  • In order to design a standing column well (SCW) for a sustainable groundwater curtain system for greenhouse heating, we conducted parameter sensitivity tests. These tests simulated the outlet temperature changes of the SCW in a groundwater recirculating greenhouse cultivation system. Our modeling considered ground thermal conductivity and hydrogeological conditions. Specifically, we examined several factors, including SCW length, enhanced thermal conductivity of the ground, and groundwater circulation rate. The simulation results indicated that there was not a significant difference in the heat exchange rate based on the characteristics of enhanced thermal conductivity. However, we anticipate a substantial difference in the case of varying SCW lengths. Therefore, we conclude that the simulation results are primarily influenced by conductive heat exchange values, as the circulating water remains at a constant groundwater level.

Groundwater-Stream Water Interaction Induced by Water Curtain Cultivation Activity in Sangdae-ri Area of Cheongju, Korea (청주 상대리지역에서 수막재배가 지하수-하천수 상호작용에 미치는 영향)

  • Moon, Sang-Ho;Kim, Yongcheol;Jeong, Youn-Young;Hwang, Jeong
    • Economic and Environmental Geology
    • /
    • v.49 no.2
    • /
    • pp.105-120
    • /
    • 2016
  • Most of riverside in Korea, in case of application of water curtain cultivation (WCC) technique, has been inveterately suffering from the gradual drawdown of groundwater level and related shortage of water resources during the WCC peak time. We believe that the water resources issue in these riverside areas can be effectively solved when the interaction between groundwater and nearby surface water is well understood. To investigate the connection between stream and ground water, and the influence of stream water on the nearby aquifer, this study examined the water temperature and oxygen and hydrogen stable isotopic compositions. The study area is well-known strawberry field applying the WCC technique in Sangdae-ri, Gadeok-myon, Cheongju City, and the sampling was done from February 2012 through June 2014 for stream and ground water. Some groundwater wells near stream showed big temporal variations in water temperature, and their oxygen and hydrogen stable isotopes showed similar compositions to those of adjacent stream water. This indicates that the influence of stream water is highly reflected in the stable isotopic composition of groundwater. Four cross-sectional lines from stream to hillside were established in the study area to determine the spatial differences in water quality of wells. At the late stage of WCC in February to March, groundwater of wells in line with short cross-sectional length showed the narrow range of isotopic compositions; however, those in the long cross-sectional line showed a wide compositional range. It was shown that the influence of the stream water at the late WCC stage have reached to the distance of 160 to 165 m from stream line, which is equivalent to the whole length and one-third point in each short and long cross-sectional line, respectively. Therefore, the wide compositional range in the long cross-sectional lines was not only due to the influence of stream water, but apparently resulted from the change of relative impact of each groundwater supplying from two or more aquifers. In view of stable isotopic compositions, there seems to be three different aquifers in this study area, which is competing for dominance of water quality in wells at each period of WCC.

Water Quality in a Drainage System Discharging Groundwater from Sangdae-ri Water Curtain Cultivation Area near Musimcheon Stream, Cheongju, Korea (무심천 인근 상대리 수막재배지에서 지하수 사용 후 배출되는 최종 배수로 물의 수질 특성)

  • Moon, Sang-Ho;Kim, Yongcheol;Hwang, Jeong
    • Economic and Environmental Geology
    • /
    • v.48 no.5
    • /
    • pp.409-420
    • /
    • 2015
  • The Sangdae-ri riverside around Musimcheon stream, flowing through Gadeok-myon of Cheongju City, is one of the representative strawberry fields employing water curtain cultivation (WCC) in Korea. In this area, annual groundwater use for WCC has been calculated by a few methods. On the assumption that all the water flowing through the final ditch may be mostly composed of groundwater, the discharge rate in it can be used as a good proxy for assessing the groundwater use. However, in the study area, the final ditch was set up in an unpaved state near and parallel to Musimcheon stream. Under such circumstances, the drainwater is likely to be influenced by infiltration and/or inflow of nearby stream. Hence, we examined whether or not stream water has influenced water flowing out through the final ditch in respect of ion concentrations or field parameters such as T, pH and electrical conductivity (EC) values. The period of measuring field parameters and sample collection was from February 2012 through February 2015. The drainwater in the final ditch did not show the average quality of groundwater, but similar quality of stream water in respect of pH, EC, ion contents and water type. From this, it is suggested that measuring the flow rate of the final ditch should not be directly used for assessing groundwater use in the study area. In addition, because of its sensitivity to ambient temperature, water temperature proved not to be appropriate for estimating the interaction between ditch and stream. For accuracy, additional methods will be needed to calculate mixing ratios between stream and ground water within drainage system.

Setup of Infiltration Galleries and Preliminary Test for Estimating Its Effectiveness in Sangdae-ri Water Curtain Cultivation Area of Cheongju, Korea (청주 상대리 수막재배지의 지중 침투형 갤러리 설치와 예비 주입시험)

  • Moon, Sang-Ho;Kim, Yongcheol;Kim, Sung-Yun;Ki, Min-Gyu
    • Economic and Environmental Geology
    • /
    • v.49 no.6
    • /
    • pp.445-458
    • /
    • 2016
  • Most of water curtain cultivation (WCC) area in Korea has been inveterately suffering from the gradual draw-down of groundwater level and related shortage of water resources at the late stage of WCC peak time. To solve this problem, artificial recharge techniques has been recently applied to some WCC area. This study introduces infiltration gallery, which is one of the artificial recharge methods, and tentatively examined the effectiveness of three galleries installed at Sangdae-ri WCC area of Cheongju City. Seven galleries are set up at each empty space between eight vinyl houses in this area and its dimension is designed as 50 cm in each width and height and 300 cm in each length. Installation process was including bed excavation, backfill with gravels and silica sands, and completion of gallery by equipment of piezometer and covering with non-woven cloth. For each B, C, D gallery, 3 types of test including preliminary, four step and one long-term injection were performed. The first preliminary test showed the rough relations between injection rates and water level rise as follows; 20 cm and 30 cm level rise for $33.29{\sim}33.84m^3/d$ and $45.60{\sim}46.99m^3/d$ in B gallery; 0 cm, 16 cm and 33 cm level rise for $21.1m^3/d$, $33.98m^3/d$ and $41.69m^3/d$ in C gallery; 29 cm and 42 cm level rise for $48.10m^3/d$ and $52.23m^3/d$ in D gallery. Afterwards, more quantitative results estimating effectiveness of artificial recharge were reasoned out through stepped and long-term injection tests, which is expected to be employed for estimating water quantity re-injected into the aquifer through these galleries by natural injection over the period of WCC peak time.

Application Effect of Heating Energy Saving Package on Venlo Type Glasshouse of Paprika Cultivation (파프리카 재배 벤로형 유리온실에서 난방에너지 절감 패키지 기술 적용효과)

  • Kwon, Jin Kyung;Jeon, Jong Gil;Kim, Seung Hee;Kim, Hyung Gweon
    • Journal of Bio-Environment Control
    • /
    • v.25 no.4
    • /
    • pp.225-231
    • /
    • 2016
  • Glasshouse heating package technologies to improve energy usage efficiency in winter were developed. Heating package was composed of the ground water source heat pump with heating capacity of 105kW, the aluminum multi-layer thermal curtain with six layers of different materials and the root zone local heater with XL pipes of ${\phi}20mm$. Venlo type glasshouse($461m^2$) with the heating package was compared with the same type and area control glasshouse with the light oil boiler, the usual non-woven fabric thermal curtain with respect to the glasshouse inside temperature, relative humidity, crop growth, and heating energy consumption. The results of test in paprika cultivation glasshouses showed that the air temperature inside glasshouse with aluminum multi-layer thermal curtain was maintained $2.2^{\circ}C$ higher than that of control glasshouse in un-heating night time and the temperature in bed with root zone local heating was $4.7^{\circ}C$ higher than that in bed without local heating. Average heating coefficient of performance(COP) of the ground water source heat pump used in paprika cultivation was 3.7 and the glasshouse inside temperature was maintained at $21^{\circ}C$ of heating set up temperature. The heating energy consumptions per 10a were measured at 14,071L of light oil and 364kWh of electric power for the control glasshouse and 35,082kWh for the glasshouse applied heating package. As results, the heating cost of the glasshouse applied heating package was 87 percent lower than that of control glasshouse. The growths of paprika in glasshouses of control and applied heating package did not show any significant difference.

Analysis of Groundwater Use and Discharge in Water Curtain Cultivation Areas: Case Study of the Cheongweon and Chungju Areas (청원-충주지역 수막재배용 지하수 사용량 및 배출량 분석)

  • Moon, Sang-Ho;Ha, Kyoochul;Kim, Yongcheol;Yoon, Pilsun
    • The Journal of Engineering Geology
    • /
    • v.22 no.4
    • /
    • pp.387-398
    • /
    • 2012
  • Korean agricultural areas that employ water curtain cultivation (WCC) have recently suffered extensive groundwater shortages due to an increase in the number of facilities. The primary focus of this study is to measure the daily groundwater use and discharge rates in the Cheongweon and Chungju pilot areas, while the second focus is to estimate the total amount of groundwater used in WCC areas nationwide in Korea. Taking into consideration several factors, including motor type, outflow abilities of wells, records of daily minimum temperatures below $0^{\circ}C$, and the number of running wells according to weather variations, we estimated that $53,138m^3/ha$ of groundwater had been used in the 4-hectare Cheongweon pilot area during the winter period of late 2011 through early 2012. On a prorated areal basis, we can calculate that the total groundwater used nationwide was 0.57 billion $m^3$ in WCC areas of $10,746m^2$. This value is equivalent to 33.7% of the total agricultural groundwater use (1.69 billion $m^3$) in Korea. During 9-22 February 2012, the daily water discharge rate in the 4-ha Cheongweon pilot area ranged from 2,079 to $2,628m^3$, averaging $2,341m^3$. Combining this value with meteorological records for 94 days with a daily minimum temperature below $0^{\circ}C$ results in an estimated groundwater volume of $54,990m^3/ha$ for the pilot area during the 2011-2012 winter period. The total amount of groundwater used nationwide in WCC areas would then be 0.59 billion $m^3$, equivalent to 34.9% of the total agricultural groundwater use in Korea. In the Chungju area, the groundwater discharge rate was estimated to be less than 805 $m^3$/ha. This value, combined with weather data for 108 days with a daily minimum temperature below $0^{\circ}C$ in this area, can be applied to infer that the total groundwater volume used in WCC areas nationwide is no more than 55% of the total agricultural groundwater use in Korea.

Effects of Decreasing Methods of Salt Content in Root Zone on Soil Properties and Crop Grwoth at the Newly Reclaimed Tidal Soil (신간척지(新干拓地)에서 근권(根圈)의 염농도(鹽濃度) 저하(低下) 방법(方法)이 토양특성(土壤特性)과 작물생육(作物生育)에 미치는 영향(影響))

  • Cho, Yeong-Kil;Jo, In-Sang;Um, Ki-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.2
    • /
    • pp.127-132
    • /
    • 1992
  • This experiment was conducted to find out the useful data for upland crop cultivation in the newly reclaimed tidal land. Poseung silty clay loam soil was selected, and cotton(Mogpo VII) and tall fescue were cultivated under different drainage systems and soil ameliorator applications. Soil hardness and bulk density were decreased by subsurface drainage and plastic film installed at 40cm depth of the soil. Red earth application was also effective to loosen the soil, but zeolite and gypsum made the subsoil compact. Water content of the soil was high in surface drain than that of subsurface drain or plastic film curtain plot during dry season. The water content was in order of plastic film curtain, surface drain and subsurface drain. Electrical conductivity(EC) was decreased to lower than 0.4 Simens $meter^{-1}$ ($SM^{-1}$) in the subsurface drain during rainy season, and the EC of subsurface drain was maintained a quater to an half of surface drain. The yield of cotton and tall fescue were high in order of subsurface drain, plastic film curtain and surface drain plot. The yields of cotton were increased to 36-73 % by ameliorator application, and the red earth application was more effective for tall fescue growth compare to gypsum and zeolite.

  • PDF