• Title/Summary/Keyword: Water curtain

Search Result 131, Processing Time 0.02 seconds

Analysis the Effects of Curtain Weir on the Control of Algal Bloom according to Installation Location in Daecheong Reservoir (대청호 수류차단막 설치 위치에 따른 녹조제어 효과 분석)

  • Lee, Heung Soo;Chung, Se Woong;Jeong, Hee Young;Min, Byeong Hwan
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.2
    • /
    • pp.231-242
    • /
    • 2010
  • The objective of study was to determine an optimal location of a float-type curtain weir in Daecheong Reservoir and to assess its effectiveness for the control of algal blooms in the reservoir. CE-QUAL-W2, a laterally averaged two-dimensional hydrodynamic and eutrophication model, was modified to accommodate vertical displacement of the weir according to water surface fluctuation and applied to simulate the reservoir hydrodynamics and water quality changes for the reservoir. The model calibrated in a previous study was updated and validated for different hydrological conditions representing drought year (2008) and normal year (2006) for the study, and adequately simulated the temporal and spatial variations of water temperature, nutrients and algal (Chl-a) concentrations. The effectiveness of curtain weir on the control of algal bloom was evaluated by applying the validated model to 2001 and 2006 assuming 9 scenarios for different installation locations. The reduction rates of algal concentration were placed in the range of 11.2~40.3% and 20.3~56.7% for 2001 and 2006, respectively. Although, the performance of curtain weir was slightly varied for different locations and different hydrological years, overall, the performance was improved as the weir was installed further downstream.

Experimental Study on the Deformation of Silt Curtain by Water Current (수리모형 실험에 의한 선박 부착형 오탁방지막의 거동특성 구명)

  • Hong, Seong Gu;Kang, Ku
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.6
    • /
    • pp.101-109
    • /
    • 2012
  • Silt curtains are constructed for minimizing pollution of sediment dispersion in water bodies. In spite of wide uses of the silt curtains, there are few studies for analyzing the effectiveness of them with respect to their dimension and hydraulic characteristics. Currently, the market of silt curtains does not provide the various dimension of them due to the limit of information regarding its effectiveness on reducing sediment pollution. In this study, a series of experiments were conducted to investigate hydraulic characteristics around the silt curtains under the different flow conditions. For this study, a silt curtain was fabricated and an open channel with 30cm of width and 40cm of depth was used. The results indicated that the silt curtain was not effective in preventing dispersion at flow velocities over 0.5m/s in real conditions. Based on the experimental results, it is required that approaching velocity should be minimized and the weight of bottom be increased in order to reduce deformation. The results of this study will provide information required to design appropriate dimension of silt curtains in various water environment such as velocity and water depths.

Time-series Analysis and Prediction of Future Trends of Groundwater Level in Water Curtain Cultivation Areas Using the ARIMA Model (ARIMA 모델을 이용한 수막재배지역 지하수위 시계열 분석 및 미래추세 예측)

  • Baek, Mi Kyung;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.2
    • /
    • pp.1-11
    • /
    • 2023
  • This study analyzed the impact of greenhouse cultivation area and groundwater level changes due to the water curtain cultivation in the greenhouse complexes. The groundwater observation data in the Miryang study area were used and classified into greenhouse and field cultivation areas to compare the groundwater impact of water curtain cultivation in the greenhouse complex. We identified the characteristics of the groundwater time series data by the terrain of the study area and selected the optimal model through time series analysis. We analyzed the time series data for each terrain's two representative groundwater observation wells. The Seasonal ARIMA model was chosen as the optimal model for riverside well, and for plain and mountain well, the ARIMA model and Seasonal ARIMA model were selected as the optimal model. A suitable prediction model is not limited to one model due to a change in a groundwater level fluctuation pattern caused by a surrounding environment change but may change over time. Therefore, it is necessary to periodically check and revise the optimal model rather than continuously applying one selected ARIMA model. Groundwater forecasting results through time series analysis can be used for sustainable groundwater resource management.

A Study on How to Reduce the Amount of Groundwater Used in the Dry Season and Improve the Water Quality of the Base Runoff (갈수기 지하수 물 사용량 저감 및 기저유출 수질 개선 방안 연구)

  • Kang, Tae-Seong;Yang, Dong-Seok;Yu, Na-Yeong;Shin, Min-Hwan;Lim, Kyoung-Jae;Kim, Jong-Gun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.2
    • /
    • pp.27-35
    • /
    • 2022
  • Based on the current status of groundwater usage in the dry season through field surveys, this study tried to suggest countermeasures to reduce groundwater usage and to improve the water quality of baseflow from agricultural fields. For this purposes, basins with water curtain cultivation preceded were targeted where decreases of groundwater due to continuous use of groundwater in spring and winter annually observed. From monitoring groudwater usage of the study watershed, 130,058, 130,105 m3/day of water was pumped in during the water curtain cultivation period (October-February) in the Shindun, Seokwon watershed respectively. And the pilot application of the smart automated sensor-based water curtain cultivation system (smart WC system) developed in this study to reduce groundwater consumption has been conducted. As a result, the efficiency of the smart WC system when threshold temperature is set as 6.3 ℃ was 21.1% compared to conventional cultivation and efficiency increased as threshold temperature gets lower. Lastly, in this study, culvert drainage and Bio-filters were installed and rainfall monitoring was performed 15 times in order to analyze the baseflow securement and pollutant loads behavior. As a result, the test-bed with culvert drainage and Bio-filter installed together generated 61.4% more baseflow (4.974 m3) than the test-bed with only culvert drainage was installed (3.056 m3). However, the total pollutant load of all water quality contents (BOD, COD, T-N, TOC) except for the SS and T-P was found to be greater in the culvert drain and Bio-filter installed than in the culvert drain test-bed.

Experimental Study on Interaction of Water Sprayed Curtain on Hot Surface of a Window Glass and its Effects on Glass Surface Temperature in Room Fires (구획화재 시 국부복사열에 노출된 유리면의 수막접촉에 따른 급냉파열특성 관한 실험적 연구)

  • 박형주;지남용
    • Fire Science and Engineering
    • /
    • v.17 no.4
    • /
    • pp.124-130
    • /
    • 2003
  • This research focuses on analysis of a interaction fracture of various glasses due to contact of water sprayed curtain on hot glass surface with high temperature produced from convective heat source near glass wall. A large scaled experimental test was done in order to find the range of the glass surface temperature to be able to cause the breakage of the glasses when water droplets reach on the hot surface. This paper shows the allowable temperature of the glass surface for prevention of the cooling down breakage before water curtain droplets contact the surface. Allowable Temperature if $250^{\circ}C$ for the tempered glass but general glass is very relatively low. Therefore if the water curtain spray system was adequately activated by a thermal detector installed below ceiling adjacent glass wall with water curtain nozzle system, all hot glass would not break out by cooling water droplet's contact on the hot surface due to convective heat released by adjacent fire source near the glass wall.

Analysis of Groundwater Level Changes Near the Greenhouse Complex Area Using Groundwater Monitoring Network (지하수관측망을 이용한 강변 시설재배지역 지하수위 변화 특성 분석)

  • Baek, Mi Kyung;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.6
    • /
    • pp.13-23
    • /
    • 2022
  • The purpose of this study was to analyze the impact of greenhouse cultivation area and groundwater level changes due to the water curtain cultivation in the greenhouse complexes, which are mainly situated along rivers where water resources are easy to secure. The groundwater observation network in Miryang, Gyeongsangnam-do, located downstream of the Nakdong River, was selected for the study area. We classified the groundwater monitoring well into the greenhouse (riverside) and field cultivation areas (plain and mountain) to compare the groundwater impact of water curtain cultivation in the greenhouse complex. The characteristics of groundwater level changes classified by terrain type were analyzed using the observed data. Riverside wells have significant permeability coefficients and are close to rivers, so they are greatly affected by river flow and precipitation changes so that water level shows a specific pattern of annual changes. Most plain wells do not show a constant annual change, but observation wells near small rivers and small-scale greenhouse cultivation areas sometimes show annual and daily changes in which the water level drops during winter. Compared to other observation wells, mountain wells do not show significant yearly changes in water level and show general characteristics of bedrock aquifer well with a low permeability coefficient.

An Analysis of Groudwater Budget in a Water Curtain Cultivation Site (청원 수막재배 지역의 물수지 특성 분석)

  • Chang, Sun Woo;Chung, Il-Moon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.6
    • /
    • pp.1259-1267
    • /
    • 2015
  • In Korea, rural groundwater development faces new challenge, which have not been experienced so far. The problem is a groundwater depletion by the water curtain cultivation (WCC) during winter season. This study investigates the groundwater depletion using three-dimensional finite difference groundwater flow program, MODFLOW to verify the water budget of the shallow aquifer of Cheongweon area. Interdisciplinary research, which has become a worldwide trend, has been adopted in studying groundwater modeling in field scale. In particular, the method of groundwater recharge estimation adopted precise modeling techniques, SWAT to groundwater flow modeling. Based on qualified field data, the model calibrated and validated its reliability. The objective of this study is to simulate various stream-aquifer interactions according to groundwater pumping with artificial boundaries, such as weirs and drainage system. We also analyzed a seasonal variation of cumulative water budget of the site to quantify the groundwater depletion and recovery in the pumping field.

On Vortex Reduction Characteristics of Pump Sump Circulating Water Intake Basin of Power Plant Using Hydraulic Experiment (수리실험을 이용한 발전소의 순환수 취수부 흡입수조의 와류저감에 관한 연구)

  • Eom, Junghyun;Lee, Du Han;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.815-824
    • /
    • 2022
  • Among the main facilities of the power plant, the circulating water used for cooling the power generation system is supplied through the Circulation Water Intake Basin (CWIB). The vortexes of various types generated in the Pump Sump (PS) of CWIB adversely affect the Circulation Water Pump (CWP) and pipelines. In particular, the free surface vortex accompanied by air intake brings about vibration, noise, cavitation etc. and these are the causes of degradation of CWP performance, damage to pipelines. Then power generation is interrupted by the causes. Therefore, it is necessary to investigate the hydraulic characteristics of CWIB through the hydraulic model experiment and apply an appropriate Anti Vortex Device (AVD) that can control the vortex to enable smooth operation of the power plant. In general, free surface vortex is controlled by Curtain Wall (CW) and the submerged vortex is by the anti vortex device of the curtain wall. The detailed specifications are described in the American National Standard for Pump Intake Design. In this study, the circulating water intake part of the Tripoli West 4×350 MW power plant in Libya was targeted, the actual operating conditions were applied, and the vortex reduction effect of the anti vortex device generated in the suction tank among the circulating water intake part was analyzed through a hydraulic model experiment. In addition, a floor splitter was basically applied to control the submerged vortex, and a new type of column curtain wall was additionally applied to control the vortex generated on the free surface to confirm the effect. As a result of analyzing the hydraulic characteristics by additionally applying the newly developed Column Curtain Wall (CCW) to the existing curtain wall, we have found that the vortex was controlled by forming a uniform flow. In addition, the vortex angle generated in the circulating water pump pipeline was 5° or less, which is the design standard of ANSI/HI 9.8, confirming the stability of the flow.

Analysis and evaluation of hydrological components in a water curtain cultivation site (수막재배지역의 수문성분 해석 및 평가)

  • Chung, Il-Moon;Chang, Sun Woo
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.9
    • /
    • pp.731-740
    • /
    • 2016
  • This study conducts the hydrological component analysis from 2010 to 2015 at the water curtain cultivation area in Cheongwon-gu, Cheongju-si and investigates the monthly based groundwater recharge variation. It is found that the rates of evaportranspiration, surface runoff and groundwater recharge were varied according to the total annual precipitation and their correlations were also changed annually. Annual recharge rates for annual precipitation ranged from 8.3% to 19%, and their coefficient of determination ranged from 0.39 to 0.94. Especially in 2015, when the severe drought came upon this area, the lack of groundwater recharge made groundwater level decrease consistently. Thus, it is thought that the special method of estimating exploitable groundwater in water curtain cultivation site is to be introduced.

An Experimental Study on the Effects of the Shape of a Drencher Head on the Characteristics of a Water Curtain (드렌처 헤드의 형상에 따른 수막특성에 관한 실험적 연구)

  • Lee, Seung-Chul;Kim, Bong-Jun;Lee, Jae-Ou;Park, Chung-Hwa;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.30 no.3
    • /
    • pp.86-93
    • /
    • 2016
  • The effects of the shape of a drencher head on the flow characteristics and radiation attenuation of a water curtain, in order to prevent a fire spread, were experimentally studied. The distance (h) between the orifice exit and deflector and the diameter of deflector (D) were varied as the shape factors of the head, with the same orifice diameter (d). It was found that an increase in h leads to an increase in the water flow rate and spray angle. However, the change in the spray angle decreases with increasing D. Increasing D brings about a subtle increase in the water flow rate and a significant decrease in the spray angle. A larger value of D makes it possible to produce a flatter pattern of the water curtain, but reduces the uniformity of the droplets inside the spray angle. The mean droplet diameter decreases significantly as the operating pressure increases. However, the variation in the shape of the drencher head does not significantly affect the change in the mean diameter at the same operating pressure. Finally, it was found that the radiation attenuation afforded by the water curtain at the same operating pressure was affected by water flow rate and droplet uniformity, which were determined by h and D, respectively.