• Title/Summary/Keyword: Water content calibration

Search Result 82, Processing Time 0.034 seconds

Determination of water content in alcohol by portable near infrared (NIR) system (휴대용 분광분석기를 이용한 알코올 중에 함유되어 있는 물의 측정)

  • Ahn, Jhii-Weon;Woo, Young-Ah;Kim, Hyo-Jin
    • Analytical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.95-101
    • /
    • 2003
  • In this study, water content in the mixture of methanol and ethanol was nondestructively measured by near infrared (NIR) spectroscopy. Two types of NIR instruments, portable NIR system with a photo-diode array and scanning type NIR spectrometer were used and the calibration results were compared. Partial least squares regression (PLSR) was applied for the calibration and validation for the quantitative analysis. The calibration results from both instruments showed good correlation with actual values. The calibration with the use of PLS model predicted water concentration with a standard error of prediction (SEP) of 0.10% and 0.12% for photo diode array and scanning type, respectively. During 6 days, routine analyses for 3%, 5% and 7% water in ethanol solution with 2% methanol were performed to validate the robustness of the developed calibration model. The routine analyses showed good results with coefficient of variation (CV) of within 3% for both types of NIR spectrometers. This study showed that the rapid determination of water in the mixture of methanol and ethanol was successfully performed by NIR spectroscopy and the performance of the portable NIR system with a photo diode array detector was comparable to that of the scanning type NIR spectrometer.

Calibrating Capacitance Sensor for Determining Water Content of Volcanic-Ash Soils (화산회토양의 수분함량측정을 위한 Capacitance Soil Moisture Sensor의 Calibration)

  • Moon, Kyung-Hwan;Joa, Jae-Ho;Choi, Kyung-San;Seo, Hyoeng-Ho;Lim, Han-Cheol;Hyun, Hae-Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.331-336
    • /
    • 2011
  • Capacitance soil moisture sensor is extensively used by soil research and irrigation management with its convenience and accuracy. This experiment was conducted to evaluate the acceptability of capacitance soil moisture sensor, named EnviroSCAN made by Sentek Ltd., in Jeju Island where volcanic ash soils are widely distributed, and to calibrate it to various soils with different amount of soil organic matter. For sensor calibration equation of volcanic ash soils, a logarithm function is better than a typical power function of non-volcanic ash soils. So there are possibilities of under evaluated in soil water contents in very wet and very dry conditions by using typical power function with volcanic ash soil areas. We suggested practical coefficients of typical calibration equation for using capacitance sensor in volcanic ash soils, also suggested equations for estimation of them with soil organic matter contents. The measurement of soil water content with a capacitance sensor can be affected by some soil characteristics such as porosity, soil organic matter content, EC, etc. So those factors should be controlled for improving the accuracy of measurement.

Determination of Water Content in Skin by using a FT Near Infrared Spectrometer

  • Suh Eun-Jung;Woo Young-Ah;Kim Hyo-Jin
    • Archives of Pharmacal Research
    • /
    • v.28 no.4
    • /
    • pp.458-462
    • /
    • 2005
  • The water content of skin was determined using a FT near infrared (NIR) spectrometer. NIR diffuse reflectance spectra were collected from hairless mouse, in vitro, and from human inner arm, in vivo. It was found that the variation of NIR absorbance band 1450 nm from OH vibration of water and 1940 nm from the combination involving OH stretching and OH deformation, depending on the absolute water content of separated hairless mouse skin, in vitro, using the FT NIR spectrometer. Partial least squares regression (PLSR) was applied to develop a calibration model. The PLS model showed good correlation. For practical use of the evaluation of human skin moisture, the PLS model for human skin moisture was developed in vivo on the basis of the relative water content of stratum corneum from the conventional capacitance method. The PLS model predicted human skin moisture with a standard errors of prediction (SEP) of 3.98 at 1130-1830 nm range. These studies showed the possibility of a rapid and nondestructive skin moisture measurement using FT NIR spectrometer.

Measurement of Electromagnetic Properties of Concrete for Nondestructive Testing (비파괴 시험을 위한 콘크리트의 전자기적 특성의 측정)

  • 임홍철;정성훈
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.3
    • /
    • pp.115-123
    • /
    • 2000
  • Characterizing the electromagnetic properties of concrete is essential to the enhancement of accuracy and reliability in nondestructive testing of concrete structures using electromagnetic techniques. To establish a data base for the properties of concrete, a measurement technique has been developed and a set of data has been obtained for the frequency range of 1~6 GHz. As moisture content is one of major contributing factors to determine permittivity of dielectric material, moisture content is varied during the measurement. An application of a measurement system which consists of open-ended coaxial probe and automatic network analyzer to concrete and mortar specimens is studied. For this, calibration techniques, size of specimens, and number of measurements necessary to obtain reliable data are investigated. From the measured data, it is shown that moisture content plays an important role to determine the permittivity of specimens. As the moisture content increases. The permittivity of specimens show tendency to approach the permittivity of water.

Development of a Real-Time Soil Moisture Meter using Oscillation Frequency Shift Method

  • Kim, Ki-Bok;Lee, Nam-Ho;Lee, Jong-Whan;Lee, Seoung-Seok;Noh, Sang-Ha
    • Agricultural and Biosystems Engineering
    • /
    • v.2 no.2
    • /
    • pp.63-68
    • /
    • 2001
  • The objective of this study was to develop a real-time soil moisture meter using RF impedance. The impedance suchas capacitance and resistance (or conductance) was analyzed using parallel cylinder type capacitance probe(C-probe) and Q-meter (HP4342). The capacitance and conductance of soil increased as volumetric water content increased. The 5 MHz of modified Colpitts type crystal oscillator was designed to detect the capacitance change of the C-probe with moist soil. A third order polynomial regression model was proposed to describe the relationship between RF impedance and volumetric water content. The prototype real time moisture meter consisted of the C-probe, sample container, oscillator, frequency counter and related signal processing units. The calibration equation for measurement of volumetric moisture content of soil was developed and validated. The correlation coefficient and root mean square error between measured volumetric water content by oven method and predicted values by prototype moisture meter for unknown soil samples were 0.984 and 0.032$cm^3$$cm\^3$, respectively.

  • PDF

Quantification of Skin Moisture in Hairless Mouse by using a Portable NIR System and a FT NIR Spectrometer (Photo Diode Array형의 휴대용 근적외 분광기와 FT 근적외 분광기를 이용한 Hairless Mouse 피부 수분 정량)

  • Suh, Eun-Jung;Woo, Young-Ah;Kim, Hyo-Jin
    • YAKHAK HOEJI
    • /
    • v.49 no.2
    • /
    • pp.115-121
    • /
    • 2005
  • In this study, the performance of a portable NIR system and a FT NIR spectrometer were compared to determine water content of hairless mouse skin. The stratum corneum parts wer e separated from the epidermal tissues by trypsin solution. NIR diffuse reflectance spectra of hairless mouse skin were acquired using a fiber optic probe. In the near infrared, water molecules show two clear absorption bands at 1450 nm from first overtone of O-H stretching and 1940 nm from the combination involving O-H stretching and O-H deformation. It was found that the variations of O-H absorption band according to water content. Partial least squares regression (PLSR) was applied to develop a calibration model. The PLS model showed a good correlation between NIR predicted value and the absolute water content of separated hairless mouse skin, in vitro. For both the portable and the FT NIR spectrometer, These studies showed the possibility of a rapid and nondestructive skin moisture measurement using NIR spectroscopy. The portable NIR spectrometer with a photodiode arrays-microsensor could be more rapidly applied for the determination of water content with comparable accuracy with the performance of a FT spectrometer .

Calibration transfer between miniature NIR spectrometers used in the assessment of intact peach and melon soluble solids content

  • Greensill, Colin.V.;Walsh, Kerry.B.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1127-1127
    • /
    • 2001
  • The transfer of predictive models using various chemometric techniques has been reported for FTNIR and scanning-grating based NIR instruments with respect relatively dry samples (<10% water). Some of the currently used transfer techniques include slope and bias correction (SBC), direct standardization (DS), piecewise direct standardization (PDS), orthogonal signal correction (OSC), finite impulse transform (FIR) and wavelet transform (WT) and application of neural networks. In a previous study (Greensill et at., 2001) on calibration transfer for wet samples (intact melons) across silicon diode array instrumentation, we reported on the performance of various techniques (SBC, DS, PDS, double window PDS (DWPDS), OSC, FIR, WT, a simple photometric response correction and wavelength interpolative method and a model updating method) in terms of RMSEP and Fearns criterion for comparison of RMSEP. In the current study, we compare these melon transfer results to a similar study employing pairs of spectrometers for non-invasive prediction of soluble solid content of peaches.

  • PDF

Uncertainty Evaluation of Ammonia Determination in Burley Tobacco (버어리종 담배중 암모니아성 질소에 대한 불확도 측정)

  • Lee Jeong-Min;Lee Kyoung-Ku;Han Sang-Bin
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.27 no.1 s.53
    • /
    • pp.107-114
    • /
    • 2005
  • The uncertainty of measurement in quantitative analysis of ammonia by continuous-flow analysis method was evaluated following internationally accepted guidelines. The sources of uncertainty associated with the analysis of ammonia were the weighing of sample, the preparation of extracting solution, the addition of extracting solution into the sample, the reproducibility of analysis and the determination of water content in tobacco, etc. In calculating uncertainties, Type A of uncertainty was evaluated by the statistical analysis of a series of observation, and Type B by the information based on supplier's catalogue and/or certificated of calibration. It was shown that the main source of uncertainty was caused by the volume measurement of 1 mL and 2 mL, the purity of ammonia reference material in the preparation of standard solution, the reproducibility of analysis and the determination of water content of tobacco. The uncertainty in the addition of extraction solution, the sample weighing, the volume measurement of 50 mL and 100 mL, and the calibration curve of standard solution contributed relatively little to the overall uncertainty. The expanded uncertainty of ammonia determination in burley tobacco at $95\%$ level of confidence was $0.00997\%$.

Measurement do Water Content in Sandy-Gravelly Soils using Time Domain Reflectometry (TDR(Time Domain Reflectometry)에 의한 사력토(Sandy-Gravelly Soil)의 함수량 측정)

  • Kim, Dong-Ju;Kim, Jeong-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.3
    • /
    • pp.215-223
    • /
    • 1999
  • Recently, measurement of soil moisture contents using TDR (time domain reflectometry) has been proven to be viable technique. The first empirical model proposed by Topp et al. (1980) has been widely used to determine moisture contents of soils from the TDR-measured dielectric constants. However, applicability of the model was limited to medium-textured soils. In this study, we investigate the applicability of the model to sandy-gravelly soils. Calibration experiments consisted of measurement on travel time of electromagnetic waveform along the parallel TDR rods inserted into samples and gravimetric determination of soil moisture contents. The experiments are performed for two sets of samples different in the length and each set consisted of seven different particle size distributions with various gavel contents. The calibration results show that the Topp equation overestimated the measured moisture content for a given dielectric constant by 3 to 8%. We therefore propose new empirical relationships valid for sandy-gravelly soils.

  • PDF

Fluoride content of bottled water available in South Korea (국내 시판 생수의 불소 이온농도 측정)

  • Kim, Ji-Soo;Nam, Yong-Tae;Kim, Se-Yeon;Jun, Eun-Joo;Kim, Jin-Bom;Jeong, Seung-Hwa
    • Journal of Korean Academy of Oral Health
    • /
    • v.42 no.4
    • /
    • pp.199-203
    • /
    • 2018
  • Objectives: The market for bottled water is increasing steadily in South Korea. Bottled water contains several naturally occuring minerals, such as calcium, magnesium, sodium, and fluoride. Fluoride is proven to be effective in preventing dental caries. In South Korea, the maximum permissible concentration of fluoride is 2 ppm for bottled water and 1.5 ppm for tap water. The aim of this study was to investigate the fluoride content of different commercially available brands of bottled water in South Korea, and compare the measured fluoride concentration to the concentration written on the label of each brand of bottled water. Methods: Twenty-seven of the 59 different brands of bottled water produced in South Korea were investigated in this study. Three bottles of each brand were purchased from supermarkets, marts, and convenience stores in each region of Korea in August 2016. For each bottled water brand, the fluoride content was measured three times using a fluoride-ion selective electrode (Orion ionplus Fluoride Electrode 9609, Orion Research, USA). The calibration curve was generated using 0.2 and 2 ppm standard solutions, and confirmed using a 1 ppm standard solution. Results: The mean fluoride content of the 27 brands of bottled water was $0.374{\pm}0.332mg/L$ (range=0.040 to 1.172 mg/L). The fluoride content was labeled by the manufacturer, on each of the tested brands of bottled water. In eight brands, the labeled fluoride content differed from the experimental data. The minimum to maximum fluoride content measured from 10 brands showed a variation of 0.3 mg/L or more when compared to the labeled fluoride content. Conclusions: This study investigated the fluoride content of various brands of bottled water produced in South Korea and compared the measured fluoride levels with fluoride information on the bottle labels. To ensure that consumers are suitably informed regarding their exposure to fluoride, correct labelling of fluoride content in bottled water is important.