• Title/Summary/Keyword: Water consumption

Search Result 1,954, Processing Time 0.031 seconds

A Design of RF Digital Remote Water Gauge with Counterflow Detection Capability (역류 흐름 검출기능을 갖는 무선 디지털 원격 수도검침기 설계)

  • Nam, Jong-Hyun;Lee, Jae-Min
    • Journal of Digital Contents Society
    • /
    • v.16 no.1
    • /
    • pp.97-104
    • /
    • 2015
  • The conventional 1 Hall sensor-type water gauge has some defects that it can not detect counterflow and low-speed flow of water, and it also generates power consumption during even sleep mode. In this paper, a low-power consumption wireless digital remote water gauge with a counterflow detection capability is proposed. The proposed water gauge detects the direction and amount of water flow by using the three Hall sensors placed at $120^{\circ}$ intervals with 8-year national standard life durability. The water gauge with three Hall sensors works without error regardless of water speed does not generate power dissipation during sleep mode by presented reading algorithm for bew water gauge. The proposed water gauge is designed to send its ID, current time and counting value to repeater or central control center with specified frequency by RF Module.

Factors Affecting Household Water Use during the COVID-19 Period: A Focus on the 33 Autonomous Districts of Seoul and Incheon (COVID-19 시기 가정용 상수도 사용에 영향을 미치는 요인에 관한 연구: 서울과 인천의 자치구 33개를 대상으로)

  • Song, Yiseul;Jo, Hanghun;Kim, Heungsoon
    • Land and Housing Review
    • /
    • v.13 no.4
    • /
    • pp.1-12
    • /
    • 2022
  • Clean water is an essential urban infrastructure in human daily life, and water plays a vital role in public health. Due to restrictions on outdoor activities during COVID-19, time staying at home has increased. Therefore, it is plausible to assume that large-scale disaster incidences such as COVID-19 will affect water consumption. In this regard, this research aims to explore the factors that influence household water use during COVID-19. The analysis period of the study is 2020, and the geographical scope covers Seoul and Incheon. A dependent variable was water consumption in the autonomous districts of Seoul and Incheon, and the factors reflecting urban characteristics were used as independent variables. Multiple regression was used for analysis, and the unit of analysis was the autonomous district in Seoul and Incheon. The finding confirmed that the pandemic situation caused an increase in water consumption. In addition, it supports policy for the elderly so that they can use water without financial difficulty. It implies that a stable supply of clean water is essential for managing infectious diseases. The findings of this study are expected to provide some implications for efficient water supply policies and efficient water supply management in the event of the spread of infectious diseases such as COVID-19.

Energy Consumption Analysis based on Filter Differential Pressure when Adopting an Air-side Economizer System for a Data Center (데이터센터에 적용된 외기도입 냉방시스템에서 필터유형별 에너지 소비량 변화)

  • Park, Seonghyun;Seo, Janghoo;Jung, Yong-Ho;Chang, Hyun-Jae;Hwang, Seok-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.7
    • /
    • pp.371-376
    • /
    • 2013
  • Recently, many studies related to reducing the energy consumption in data centers have been conducted. These studies have mainly focused on the air intake and exhaust system of a computer room air handling unit (CRAH) in the server room, diffuser type, suppression and discharge of the heat generated from the server, and the air-side economizer system. In this study, the energy consumption of the conventional central chilled water cooling system is compared with the energy consumption of the air-side economizer system. We also examined how changes of differential pressure by each filter have influenced energy consumption, using the power usage effectiveness (PUE). Results show that the PUE was improved, and energy consumption decreased, by applying the air-side economizer system.

A Study on the Energy Consumption and the Degree of Satisfaction by Heating System in Rental Apartment (임대아파트 난방방식별 에너지소비와 만족도 조사에 관한 연구)

  • 박민용;장승재
    • Journal of the Korean housing association
    • /
    • v.14 no.3
    • /
    • pp.85-92
    • /
    • 2003
  • Considering the present development situation of rental apartment since 1982, the supply of homeless housing for low-income dwellers has contributed a amount of quantities, but has been deficient qualities in housing policy. To propose the energy policy for low-income dwellers, this study investigated the energy consumption and the degree of heating satisfaction by heating system through questionaries in permanent rental apartment and 50 year period rental apartment complexes. The results of this study were as follows; The annual energy consumption of heating and hot water supply is 267.2 Mca1/$\textrm{m}^2$ㆍyr in central heating system, is 163.9 Mca1/$\textrm{m}^2$ㆍyr in unit heating system. But from the view of annual energy cost and the degree of heating satisfaction, central heating system were better than unit heating system in rental apartment.

Economic Problems of Rural Poor Households in Korea II - Focused on the Consumption (농촌빈곤가계의 경제문제 II -소비 문제를 중심으로-)

  • 최은숙;노자경
    • Korean Journal of Rural Living Science
    • /
    • v.6 no.2
    • /
    • pp.151-161
    • /
    • 1995
  • The objective of this study is to analyse consumption problems of the rural poor households. This is a succeeding work to the previous report on economic resource problems. Data from 154 rural poor house holds and 290 rural non-poor households were analysed to comprehend their consumption practices, financial management ability, consumer competence of homemakers, and market environments. The major findings and conclusions are as follows : 1. The rural poor households had deficit of 30, 000 won per month. They perceived relative importance of the educational expenses and food expenses and heavier pressure of educational expenses and light and water expenses than other items. 2. The rural poor households evaluated their financial management ability average like non-poor households but their level of consumer competence was lower than other households. This means their consumer efficiency is relatively low. 3. The rural poor households had similar grade of market environments to non-poor households. This is significantly different from urban households.

  • PDF

A Study of GHG-AP Integrated Inventories and Alternative Energy Use Scenario of Energy Consumption in the University (대학 내 에너지 소비에 따른 온실가스-대기오염 통합 인벤토리 및 대체 에너지 사용 시나리오 분석)

  • Jung, Jae-Hyung;Kwon, O-Yul
    • Journal of Environmental Science International
    • /
    • v.23 no.9
    • /
    • pp.1643-1654
    • /
    • 2014
  • The university is one of the main energy consumption facilities and thereby releases a large amount of greenhouse gas (GHG). Accordingly, efforts for reducing energy consumption and GHG have been established in many local as well as international universities. However, it has been limited to energy consumption and GHG, and has not included air pollution (AP). Therefore, we estimated GHG and AP integrated emissions from the energy consumed by Seoul National University of Science and Technology during the years between 2010 and 2012. In addition, the effect of alternative energy use scenario was analysed. We estimated GHG using IPCC guideline and Guidelines for Local Government Greenhouse Inventories, and AP using APEMEP/EEA Emission Inventory Guidebook 2013 and Air Pollutants Calculation Manual. The estimated annual average GHG emission was $11,420tonCO_{2eq}$, of which 27% was direct emissions from fuel combustion sectors, including stationary and mobile source, and the remaining 73% was indirect emissions from purchased electricity and purchased water supply. The estimated annual average AP emission was 7,757 kgAP, of which the total amount was from direct emissions only. The annual GHG emissions from city gas and purchased electricity usage per unit area ($m^2$) of the university buildings were estimated as $15.4kgCO_{2eq}/m^2$ and $42.4tonCO_{2eq}/m^2$ and those per person enrolled in the university were $210kgCO_{2eq}$/capita and $577kgCO_{2eq}$/capita. Alternative energy use scenarios revealed that the use of all alternative energy sources including solar energy, electric car and rain water reuse applicable to the university could reduce as much as 9.4% of the annual GHG and 34% of AP integrated emissions, saving approximately 400 million won per year, corresponding to 14% of the university energy budget.

Ultrafiltration membranes for drinking-water production from low-quality surface water: A case study in Spain

  • Rojas-Serrano, Fatima;Alvarez-Arroyo, Rocio;Perez, Jorge I.;Plaza, Fidel;Garralon, Gloria;Gomez, Miguel A.
    • Membrane and Water Treatment
    • /
    • v.6 no.1
    • /
    • pp.77-94
    • /
    • 2015
  • Ultrafiltration membranes have several advantages over conventional drinking-water treatment. However, this technology presents major limitations, such as irreversible fouling and low removal of natural organic matter. Fouling depends heavily on the raw-water quality as well as on the operating conditions of the process, including flux, permeate recovery, pre-treatment, chemical cleaning, and backwashing. Starting with the premise that the optimisation of operating variables can improve membrane performance, different experiments were conducted in a pilot plant located in Granada (Spain). Several combinations of permeate and backwashing flow rates, backwashing frequencies, and aeration flow rates were tested for low-quality water coming from Genil River with the following results: the effluent quality did not depend on the combination of operating conditions chosen; and the membrane was effective for the removal of microorganisms, turbidity and suspended solids but the yields for the removal of dissolved organic carbon were extremely low. In addition, the threshold transmembrane pressure (-0.7 bar) was reached within a few hours and it was difficult to recover due to the low efficiency of the chemical cleanings. Moreover, greater transmembrane pressure due to fouling also increased the energy consumption, and it was not possible to lower it without compromising the permeate recovery. Finally, the intensification of aeration contributed positively to lengthening the operation times but again raised energy consumption. In light of these findings, the feasibility of ultrafiltration as a single treatment is questioned for low-quality influents.