• Title/Summary/Keyword: Water circulation system

Search Result 474, Processing Time 0.021 seconds

Performance Improvement of Dielectric Barrier Plasma Reactor for Advanced Oxidation Process (고급산화공정용 유전체 장벽 플라즈마 반응기의 성능 개선)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.7
    • /
    • pp.459-466
    • /
    • 2012
  • In order to improved treatment performance of dielectric barrier discharge (DBD) plasma, plasm + UV process and gas-liquid mixing method has been investigated. This study investigated the degradation of N, N-Dimethyl-4-nitrosoaniline (RNO, indicator of the generation of OH radical). The basic DBD plasma reactor of this study consisted of a plasma reactor (consist of quartz dielectric tube, titanium discharge (inner) and ground (outer) electrode), air and power supply system. Improvement of plasma reactor was done by the combined basic plasma reactor with the UV process, adapt of gas-liquid mixer. The effect of UV power of plasma + UV process (0~10 W), gas-liquid mixing existence and type of mixer, air flow rate (1~6 L/min), range of diffuser pore size (16~$160{\mu}m$), water circulation rate (2.8~9.4 L/min) and UV power of improved plasma + UV process (0~10 W) were evaluated. The experimental results showed that RNO degradation of optimum plasma + UV process was 7.36% higher than that of the basic plasma reactor. It was observed that the RNO decomposition of gas-liquid mixing method was higher than that of the plasma + UV process. Performance for RNO degradation with gas-liquid mixing method lie in: gas-liquid mixing type > pump type > basic reactor. RNO degradation of improved reactor which is adapted gas-liquid mixer of diffuser type showed increase of 17.42% removal efficiency. The optimum air flow rate, range of diffuser pore size and water circulation rate for the RNO degradation at improved reactor system were 4 L/min, 40~$100{\mu}m$ and 6.9 L/min, respectively. Synergistic effect of gas-liquid mixing plasma + UV process was found to be insignificant.

Thermodynamic Analysis of the Organic Rankine Cycle as a Waste Heat Recovery System of Marine Diesel Engine (유기 랜킨 사이클을 이용한 선박 주기관 폐열 회수 시스템의 열역학적 분석)

  • Jin, Jung-Kun;Lee, Ho-Ki;Park, Gun-Il;Choi, Jae-Woong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.7
    • /
    • pp.711-719
    • /
    • 2012
  • A thermodynamic analysis and a feasibility study on the organic Rankine cycle (ORC) as a waste heat recovery system for a marine diesel engine were carried out. The ORC and its combined cycle with the engine were simulated, and its performance was estimated theoretically using R245fa. A parametric study on the performance of the ORC system was carried out under different temperature conditions of the heat transfer loop and specification of the heat exchanger. According to the thermodynamic analysis, ~10% of the thermal efficiency of the cycle was able to be realized with the low temperature heat source below $250^{\circ}C$. The electric power output of the ORC was estimated to be about 4% of the mechanical power output of the engine, considering additional pumps for cooling water and circulation of the heat transfer medium. According to the present study, the electric power generated by the ORC is about 59%-69% of the required power, and it is possible to reduce the fuel consumption under normal seagoing conditions.

A Study on the Functional Feeding Groups and Community Stability of Benthic Macroinvertebrate in Forest Fire Area (산불지의 저서성대형무척추동물 섭식기능군 및 군집안정성에 관한 연구)

  • Sim, Kwang Sub;Kim, Myoung Eun;Lim, Joo Hoon;Seo, Eul Won;Lee, Jong Eun
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.1
    • /
    • pp.112-117
    • /
    • 2011
  • This study was conducted for searching the functional feeding groups, and community stability of the macroinvertebrate on forest fire area of Uljin-gun. The samples were collected from 2 sites of control area and 2 sites of experimental area during 2007 to 2009. The identified species were 89 belonged to 47 families, 16 order, 6 class, and 4 phylum in control area. And 84 belonged to 43 families, 16 order, 6 class, and 4 phylum were identified in experimental area. As a result of changes in species and individuals of E.P.T. taxa investigated in experimental area by year, Ephemeroptera was 21 species, $2,434.6inds./m^2$, Plecoptera was 3 species, $199.8inds./m^2$, and Trichoptera 14 species, $540.2inds./m^2$ in 2007. And in 2009, Ephemeroptera was 9 species, $296inds./m^2$, Trichoptera was 4 species, $44.4inds./m^2$, and Plecoptera was none, showing that species and individuals belonging to E.P.T. taxa decrease rapidly every year. Community analysis by year, in 2008 when the water system started to be influenced by the fire directly, it showed a trend that H' and RI decreased in the experimental area. Functional feeding group by year, it showed a trend that species and individuals of GC type which is a functional group picking up and eating FPOM (fine particulate organic matter) from deposits in the bottom of water or benthic areas and performs an important function of material circulation in ecosystem decrease every year. Community stability by year, an environment of water system in forest fire area started to be somewhat destroyed, from 2008, it is shown that both species in I area which have great ability of resistance and recovery and species in III area which live in relatively stable water system decreased a little.

Experimental Study on Compression/Absorption High-Temperature Hybrid Heat Pump with Natural Refrigerant Mixture (천연혼합냉매를 이용한 압축/흡수식 고온히트펌프의 실험적 연구)

  • Kim, Ji-Young;Park, Seong-Ryong;Baik, Young-Jin;Chang, Ki-Chang;Ra, Ho-Sang;Kim, Min-Sung;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1367-1373
    • /
    • 2011
  • This research concerns the development of a compression/absorption high-temperature hybrid heat pump that uses a natural refrigerant mixture. Heat pumps based on the compression/absorption cycle offer various advantages over conventional heat pumps based on the vapor compression cycle, such as large temperature glide, temperature lift, flexible operating range, and capacity control. In this study, a lab-scale prototype hybrid heat pump was constructed with a two-stage compressor, absorber, desorber, desuperheater, solution heat exchanger, solution pump, liquid/vapor separator, and rectifier as the main components. The hybrid heat pump system operated at 10-kW-class heating capacity producing hot water whose temperature was more than $90^{\circ}C$ when the heat source and sink temperatures were $50^{\circ}C$. Experiments with various $NH_3/H_2O$ mass fractions and compressor/pump circulation ratios were performed on the system. From the study, the system performance was optimized at a specific $NH_3$ concentration.

Healing Landscape Design for Hospital Outdoor Space - A Case of the Kyeongsang National University Hospital in Changwon - (치유경관의 개념을 적용한 병원 옥외공간 조경설계 - 창원 경상대학교 병원을 사례로 -)

  • Min, Byoung-Wook
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.41 no.1
    • /
    • pp.82-92
    • /
    • 2013
  • This paper presents a landscape design proposal for the Kyeongsang National University Hospital in Changwon, Kyeongsangnam-do. The site is located at 555 Samjeongja-dong, Seongsan-gu, Changwon, Kyeongsangnam-do, and its area is approximately $79,743.1m^2$. The goal of the design was to create a landscape that helps the patients' recovery and public well-being as well as respects the surrounding environment. In order to achieve this goal, three design subjects were considered: maximizing the healing functions of the landscape, promoting ecologically regenerative landscape, and increasing the aesthetic value of the landscape based on the local context. For the healing aspect, first, therapeutic plants were carefully selected and various healing programs were introduced to the open space area such as the sensory garden, meditative space, the medicinal herb garden, outdoor acupressure treatment facilities, remedial playground etc. In addition, as the importance of patient's privacy is emphasized in research, the space and circulation patterns were divided according to the characteristics of the users. For ecological consideration, the design proposed to preserve and extend the existing ridgeline with pine forest, and recover the natural water system and recycle the water for the landscape management. For the aesthetic experience of the people, in contrast to the surrounding evergreen forest, diverse deciduous and flowering plants were introduced to arouse a sense of the season, and fruit bearing trees for wildlife to create a specific mood of being in nature so that people can listen to the songs of the birds and watch squirrels play etc. In addition, all the spaces and facilities were designed and placed according to universal design principles so that there would be no barrier for the patients to use them. Also, a sustainable management scheme was suggested to maintain the landscape in ecological and economical ways.

Future Inundation Risk Evaluation of Farmland in the Moohan Stream Watershed Based on CMIP5 and CMIP6 GCMs (CMIP5 및 CMIP6 GCM 기반 무한천 유역 농경지 미래 침수 위험도 분석)

  • Jun, Sang Min;Hwang, Soonho;Kim, Jihye;Kwak, Jihye;Kim, Kyeung;Lee, Hyun Ji;Kim, Seokhyeon;Cho, Jaepil;Lee, Jae Nam;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.6
    • /
    • pp.131-142
    • /
    • 2020
  • The objective of this study was to evaluate future inundation risk of farmland according to the application of coupled model intercomparison project phase 5 (CMIP5) and coupled model intercomparison project phase 6 (CMIP6). In this study, future weather data based on CMIP5 and CMIP6 general circulation model (GCM) were collected, and inundation was simulated using the river modeling system for small agricultural watershed (RMS) and GATE2018 in the Tanjung district of the Moohan stream watershed. Although the average probable rainfall of CMIP5 and CMIP6 did not show significant differences as a result of calculating the probability rainfall, the difference between the minimum and maximum values was significantly larger in CMIP6. The results of the flood discharge calculation and the inundation risk assessment showed similar to trends to those of probability rainfall calculations. The risk of inundation in the future period was found to increase in all sub-watersheds, and the risk of inundation has been analyzed to increase significantly, especially if CMIP6 data are used. Therefore, it is necessary to consider climate change effects by utilizing CMIP6-based future weather data when designing and reinforcing water structures in agricultural areas in the future. The results of this study are expected to be used as basic data for utilizing CMIP6-based future weather data.

The Effect of Low Impact Development Techniques on Urban Runoff (저영향개발기법이 도시 유출에 미치는 영향)

  • Kim, Heesoo;Chung, Gunhui
    • Journal of Wetlands Research
    • /
    • v.23 no.4
    • /
    • pp.307-316
    • /
    • 2021
  • Due to rapidly increased urbanization, impervious area has been extended and concerns about urban flooding has been increased as well. A lot of effort has been made to restore the urban water circulation. Low Impact Development (LID) technology that consist of retention, infiltration, and evapotranspiration has begun to attract attention to simulate the hydrologic phenomenon before and after development. Many researches on the technique is being actively conducted. In this study, the effect on reducing runoff in urban catchment was analyzed and evaluated by applying LID techniques using SWMM and six scenarios. A SWMM-LID model was built for the Gasan 1 rainwater pumping station basin, and Green Roof and Permeable Pavement were selected as LID techniques to be applied. As a result, the reduction effect of the permeable pavement was larger than green roof. In the future, the results could be used to design a LID facility using the characteristics of the watershed, and other urban water resource factors such as river and groundwater levels that affect each other should be considered, so that the entire system can be considered.

Production of High-Resolution Long-Term Regional Ocean Reanalysis Data and Diagnosis of Ocean Climate Change in the Northwest Pacific (북서태평양 장기 고해상도 지역해양 재분석 자료 생산 및 해양기후변화 진단)

  • Young Ho Kim
    • Journal of the Korean earth science society
    • /
    • v.45 no.3
    • /
    • pp.192-202
    • /
    • 2024
  • Ocean reanalysis data are extensively used in ocean circulation and climate research by integrating observational data with numerical models. This approach overcomes the spatial and temporal limitations of observational data and provides high-resolution gridded information that considers the physical interactions between ocean variables. In this study, I extended the previously produced 12-year (2011-2022) Northwest Pacific regional ocean reanalysis data to create a long-term reanalysis dataset (K-ORA22E) with a horizontal resolution of 1/24° spanning 30 years (1993-2022). These data were analyzed to diagnose long-term ocean climate change in the Korean marginal seas. Analysis of the K-ORA22E data revealed that the axis of the Kuroshio extension has shifted northward by approximately 6 km per year over the past 30 years, with a significant increase in sea surface temperature north of the Kuroshio axis. Among the waters surrounding the Korean Peninsula, the East Sea exhibited the most significant temperature increase. In the East Sea, the temperature increase was more pronounced in the middle layer than in the surface layer, with the East Korea Warm Current showing a rate two to three times higher than the global average. In the central Yellow Sea, where the Yellow Sea Bottom Cold Water appears, temperatures increased over the long-term, but decreased along the west and south coasts of the Korean Peninsula. These spatial differences in long-term temperature changes appear to be closely related to the heat transport pathways of warm water from the Kuroshio Current. High-resolution regional ocean reanalysis data, such as the K-ORA22E produced in this study, are essential foundational data for understanding long-term variability in the Korean marginal seas and analyzing the impacts of climate change.

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2011 (설비공학 분야의 최근 연구 동향: 2011년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Lee, Dae-Young;Kim, Seo-Young;Choi, Jong-Min;Paik, Yong-Kyoo;Kim, Su-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.6
    • /
    • pp.521-537
    • /
    • 2012
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2011. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of fluid machinery and fluid flow, thermodynamic cycle, and new and renewable energy. Various topics were presented in the field of fluid machinery and fluid flow. Research issues mainly focused on the rankine cycle in the field of thermodynamic cycle. In the new and renewable energy area, researches were presented on geothermal energy, fuel cell, biogas, reformer, solar water heating system, and metane hydration. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, nanofluids and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer above liquid helium surface in a cryostat, methane hydrate formation, heat and mass transfer in a liquid desiccant dehumidifier, thermoelectric air-cooling system, heat transfer in multiple slot impinging jet, and heat transfer enhancement by protrusion-in-dimples. In the area of pool boiling and condensing heat transfer, researches on pool boiling of water in low-fin and turbo-B surfaces, pool boiling of R245a, convective boiling two-phase flow in trapezoidal microchannels, condensing of FC-72 on pin-finned surfaces, and natural circulation vertical evaporator were actively performed. In the area of nanofluids, thermal characteristics of heat pipes using water-based MWCNT nanofluids and the thermal conductivity and viscosity were measured. In the area of industrial heat exchangers, researches on fin-tube heat exchangers for waste gas heat recovery and Chevron type plate heat exchanger were implemented. (3) Refrigeration systems with alternative refrigerants such as $CO_2$, hydrocarbons, and mixed refrigerants were studied. Heating performance improvement of heat pump systems were tried applying supplementary components such as a refrigerant heater or a solar collector. The effects of frost growth were studied on the operation characteristic of refrigeration systems and the energy performance of various defrost methods were evaluated. The current situation of the domestic cold storage facilities was analyzed and the future demand was predicted. (4) In building mechanical system fields, a variety of studies were conducted to achieve effective consumption of heat and maximize efficiency of heat in buildings. Various researches were performed to maximize performance of mechanical devices and optimize the operation of HVAC systems. (5) In the fields of architectural environment and energy, diverse purposes of studies were conducted such as indoor environment, building energy, and renewable energy. In particular, renewable energy and building energy-related researches have mainly been studied as reflecting the global interests. In addition, various researches have been performed for reducing cooling load in a building using spot exhaust air, natural ventilation and energy efficiency systems.

A model experiment on the underwater shape of deepsea bottom trawl net (심해 저층트롤망의 수중형상에 관한 모형실험)

  • Park, Gwang-Je;Lee, Ju-Hee;Kim, Hyung-Seok;Jeong, Sun-Beom;Oh, Taeg-Yun;Bae, Jae-Hyun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.42 no.3
    • /
    • pp.134-147
    • /
    • 2006
  • A model experiment using circulation water channel was carried out to investigate the dynamic characteristics of bottom trawl net which can be used in sea mount of North Pacific. Hydrodynamic resistance and shape variation according to the flow velocity and angle of hand rope transformation for net were measured, and experimental value was analyzed as the value of full-scale bottom trawl net. The results summarized are as follows; At the $30^{\circ}$ of angle of hand rope to net, hydrodynamic resistance varied from 0.5kgf to 2.68kgf as the flow velocity increased between 0.31m/s and 0.92m/s, and formula of hydrodynamic resistance for the model net was $F_m=3.04\;{\cdot}\;{\upsilon}^{1.53}$. At the fixed angle of hand rope, Net height was low and Net width was high according to the increase of flow velocity, and in addition, vertical opening was low and Net width was high by the increase of angle of hand rope at the fixed flow velocity. At the $30^{\circ}$ of angle of hand rope to net, net opening area was $0.214m^2$ as flow velocity was 0.61m/s, and formula of net opening area for the model net was $S_m=-0.22{\upsilon}+0.35$. At the $30^{\circ}$ of angle of hand rope to net, catch efficiency seemed to be highest as $0.319m^3/s$ of filtering volume at the 0.76m/s(51kt's) of flow velocity. Shape variation of net showed the gradual laminar transform for the variation of flow velocity but there needed some improvements due to the occurrence of shortening at the ahead of wing net.