• Title/Summary/Keyword: Water channel

Search Result 2,391, Processing Time 0.033 seconds

Experimental Study on the Depth-Variations of Confluence Area in Small Urban Channel (도시 소하천 합류부 수심변화에 대한 실험연구)

  • 심기오;이길춘
    • Water for future
    • /
    • v.28 no.3
    • /
    • pp.197-204
    • /
    • 1995
  • The runoff from an urban catchment is increased because of the gravitation of the population towards cities. For this reason, water level increment in confluence area makes it impossible to drain internal water and thus produces flood out in upstream areas. In this study, flow variations of main channel are measured which is caused by combining storm sewer into main channel in small watershed. Depth increment in main stream is analyzed due to flowrate and slope in main channel and flowrate, slope is getting steeper, and also due to low flowrate in main stream and high flowrate in tributrary channel. For the degree of confluence, depth ratio decreases when the degree is getting small. As mentioned above, main factors influencing the depth ratio increment of confluence channel are in the order of the degree of confluence, and the flowrate of tributary channel and main channel.

  • PDF

Varied Flow Analysis for Linear Drainage Channels (선형 배수로에 대한 부등류 해석)

  • Ku, Hye-Jin;Jun, Kyung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.8
    • /
    • pp.773-784
    • /
    • 2008
  • The present study was carried out to examine flow properties in linear drainage channels such as road surface drainage facilities. The finite difference formulation for the varied flow analysis was solved for flow profiles in the channels. Starting the first step at the control section, the Newton-Raphson method was applied for producing numerical solutions of the equation. We considered two types of linear drainage channels, a channel with one outlet at downstream end and a channel with two outlets at both ends. Moreover, the flow analysis for various channel slopes was performed. However, we considered channels with the two outlets of slopes satisfying the condition that the both ends are the control section. The maximum of those slopes was decided from the relation between the channel slope and the location of control section. The flow of a channel with one outlet was calculated upward and downward from the control section existing in channel or upward from the control section at downstream end. The flow of a channel with two outlets at both ends were calculated for upstream and downstream channel segments divided by the water dividend, respectively and the flow analysis was completed when the water depth at the water dividend calculated from upstream end was equal to that calculated from downstream end. If the slope was larger than the critical slope, the channel with two outlets was likely to behave like the channel with one outlet. The maximum water depth was investigated and compared with that calculated additionally from the uniform flow analysis. The uniform flow analysis was likely to lead a excessive design of a drainage channel with mild slope.

Simple and Highly Efficient Droplet Merging Method Using a Microfluidic Device (미세유체소자를 이용한 간단하고 효율적인 액적의 병합)

  • Jin, Byung-Ju;Kim, Young-Won;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.3
    • /
    • pp.178-185
    • /
    • 2009
  • Simple and highly efficient droplet merging method is proposed, which enables two nanoliter or picoliter droplets to merge regularly in a straight microchannel. Using a cross channel with inflows of one oil phase through the main channel and two water phases through the side channels, two droplets of different sizes can be generated alternatingly in accordance with flow rate difference of the water phases. It is shown that for a fixed oil phase flow rate, the flow rate of one water phase required for alternating droplet generation increases linearly with the flow rate of another water phase. By this method, the droplets are merged with 100 % efficiency without any additional driving forces.

CFD analysis on the behavior of liquid water in flow channel of PEM fuel cell (PEM 연료전지 유로에서 물의 거동에 대한 CFD 해석)

  • Kim, Hyun-Il;Nam, Jin-Hyun;Shin, Dong-Hoon;Chung, Tae-Yong;Kim, Young-Gyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.23-26
    • /
    • 2007
  • Liquid water in flow channel is an important factor that limits the steady and transient performance of PEM fuel cells. A computational fluid dynamics study based on the volume-of-fluid (VOF) multi-phase model is conducted to understand the transport behavior of liquid water in flow channel. The liquid water transport in $180^{\circ}$ bends is investigated and the effect of chamfering is discussed. The effect of wall adhesion is also considered by varying the contact angle of channel surfaces. The result of this study is believed to provide a useful guideline for design optimization of flow patterns or channel configurations of PEM fuel cells.

  • PDF

Measurements of Velocity Distribution Function in Circular Open Channel Flows by Stereoscopic PIV (3차원 PIV에 의한 원형 개수로 유동의 속도분포 함수 측정)

  • Yoon, Ji-In;Sung, Jae-Yong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.5
    • /
    • pp.365-374
    • /
    • 2011
  • For the first time, the present study has measured the velocity distribution function in circular open channel flow in a three-dimensional shape using a stereoscopic PIV system. For a given channel slope, water depth was varied from 30% to 80% of the channel diameter. Then, the characteristics of the velocity distribution function was compared according to the change of the water depth. Unlike a rectangular channel, the present experiment exhibited quite different shapes in the velocity distribution function whether the water depth is higher than 50% or not. Especially, the position of maximum velocity in the central and side wall changes in a different manner for the water depth above 50%. By differentiating the velocity distribution function, local wall friction coefficient was evaluated as a function of wall position. If the water depth goes down, the difference between the maximum and minimum values in the local wall friction coefficient increases, and the averaged value a1so increases.

A Study on Characteristics of Flood Flow at a Channel Confluence Connected Asymmetrically with Four Channels (네 개의 수로가 비대칭으로 연결된 수로 합류부에서의 홍수흐름 특성에 관한 연구)

  • Jeong, Woo Chang
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.7
    • /
    • pp.767-781
    • /
    • 2013
  • In this study, the hydraulic model experiments and numerical simulations are carried out to analyze the flood flow characteristics in and around a channel confluence connected asymmetrically with four channels. The numerical model applied in this study is ANSYS CFX (ver. 14) which is the commercial three-dimensional CFD model. As results of comparison between the measured and simulated water depth distributions in and around a channel confluence, the agreement is relatively well satisfied. It can be shown in this study that the water surface profiles in and around a channel confluence are significant different with the two channel directions in which the water are entering and increased inflow.

Functional Assessment for Preservation and Restoration of Wetland-type Old River Channel:Mangyoung River (습지형 구하도 보전 및 복원을 위한 기능 평가: 만경강 대상)

  • Hong, Il;Kang, Joon Gu;Kang, Su Jin;Yeo, Hong Koo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4B
    • /
    • pp.213-220
    • /
    • 2012
  • Old river channels have been formed by engineering a straight channel in Korea. This can be classified as wetland-type or land-type. The wetland-type old river channel uses parts of agricultural water supply. However, the channels have been neglected since there are problems associated with poor water quality, reduced water level, ecosystem disturbance, etc. Thus, river maintenance through preservation and restoration of old river channel can be very effective in watershed management. To achieve this, functional assessment of wetland-type old river channel is a priority need. This study applied the wetland-type channel in Mangyoung river for functional assessment. It was formed these channels with regard to the following four major criteria (Natureless, Habitat, Water-friendliness and Water quality) and 21 indices. The indices managed by measuring depending in weights. Consequently, wetland-type channel in Mangyoung river was in good condition both natureless and habitat, while it was a fragile environment in water-friendliness and water quality. In particular, the areas where it has insufficiency water and water suffering from eutrophication needs urgent improvement. This results will be used to utilize wetland-type old river channel as watershed management.

Simulation of Moving Storm in a Watershed Using Distributed Models

  • Choi, Gye-Woon;Lee, Hee-Seung;Ahn, Sang-Jin
    • Korean Journal of Hydrosciences
    • /
    • v.5
    • /
    • pp.1-16
    • /
    • 1994
  • In this paper distributed models for simulating spatially and temporally varied moving storm in a watershed were developed. The complete simulation in a watershed is achieved through two sequential flow simulations which are overland flow simulation and channel network flow simulation. Two dimensional continuity equation and momentum equation of kinematic approximation were used in the overland flow simulation. On the other hand, in the channel network simulation two types of governing equations which are one dimensional continuity and momentum equations between two adjacent sections in a channel, and continuity and energy equations at a channel junction were applied. The finite difference formulations were used in the channel network model. Macks Creek Experimental Watershed in Idaho, USA was selected as a target watershed and the moving storm on August 23, 1965, which continued from 3:30 P.M. to 5:30 P.M., was utilized. The rainfall intensity fo the moving storm in the watershed was temporally varied and the storm was continuously moved from one place to the other place in a watershed. Furthermore, runoff parameters, which are soil types, vegetation coverages, overland plane slopes, channel bed slopes and so on, are spatially varied. The good agreement between the hydrograph simulated using distributed models and the hydrograph observed by ARS are Shown. Also, the conservations of mass between upstreams and downstreams at channel junctions are well indicated and the wpatial and temporal vaiability in a watershed is well simulated using suggested distributed models.

  • PDF

Temporal and Spatial Variations of Sea Surface Temperature in Jinju Bay in the South Coast of Korea (진주만 해역 수온의 시공간적 변동 특성)

  • Choo, Hyo-Sang;Yoon, Eun-Chan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.4
    • /
    • pp.315-326
    • /
    • 2015
  • Temporal and spatial variations of surface water temperature in Jinju Bay for the period of 2010~2011 were studied using the data from temperature monitoring buoys deployed at 17 stations in the south coast of Korea. Water temperature shows the maximum late in January and the minimum early in August. Seasonal variation of water temperatures at the north part of the bay is smaller than the middle and the south. In summer, the lowest and the highest of maximum water temperature are distributed around Jijok Channel which is located at the south of the bay. The fluctuations of water temperatures at Noryang and Daebang Channel are smaller than others because of vertical mixing caused by passage of strong tidal currents. Wind and strong currents affect on the stratification of the surface water layer near Daebang Channel. High temperatures come in frequently around the north area when eastward constant flows appear at neap tide as blowing westerly in the springtime at Noryang Channel. Spectral analyses of temperature records show significant peaks at 7~20 day periods at Noryang Channel, 7~20 day and semidiurnal at the west coast of Changsun Island and Jijok Channel and 7~20 day and diurnal at the middle of the bay. Temperature fluctuation at Noryang Channel shows high coherence and has leading phase with those at other stations in the bay. However, the phase of temperature fluctuation at Noryang Channel falls behind that at Daebang Channel. Daebang Channel has an influence on the temperature fluctuation only at the west and middle part of the bay. Cross-correlation analyses for the temperature fluctuation show that Jinju Bay could be classified into six areas; Noryang Channel, the area of convergence and divergence at the north, Daebang Channel, the west coast of Changsun Island, the mixing area at the middle of the bay and the south inside of the bay, respectively.

An Experimental Study on the Variation of Hydraulic Characteristics due to Vegetation in Open Channel (개수로에서 식생에 의한 수리특성 변화에 관한 실험적 연구)

  • Lee, Joon-Ho;Yoon, Sei-Eui
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.3
    • /
    • pp.265-276
    • /
    • 2007
  • An understanding of the hydraulic characteristics in the compound channel with vegetation is important in designing stream restorations or managing the floodplain. A laboratory flume of 16 m long and 0.8 m wide was used for analysis of the hydraulic characteristics in the single section channel and the compound channel with artificial vegetation. Slope of experimental channel is 0.5 %. Discharges are ranged from $0.2\;m^3/s\;to\;$0.4\;m^3/s$. The experiments were done by changing water depth ratio, vegetation density and vegetation location. When water depth ratio in the single section channel with vegetation increase up to 3.5, the results showed that the increment of water depth due to vegetation may be ignored in practice. The maximum increment of water depth was measured up to 6 % in the compound channel with vegetation and the range of velocities increment in the low flow channel was from 25 % to 85 % compared with section average velocities. As the vegetation densities increase and water depth ratios decrease, the velocity of the low flow channel increased. The range of roughness coefficients in the vegetated reaches were estimated from 0.055 to 0.14 in the single section channel and from 0.063 to 0.085 in the compound channel using HEC-RAS and RMA-2 model.