• Title/Summary/Keyword: Water calorimeter

Search Result 91, Processing Time 0.037 seconds

The Nature of Water in Tactic Poly (2-Hydroxyethyl Methacrylate) Hydrogels

  • Kim, Eui-Hwan;Jeon, Sang-Il;Yoon, Sung-Chul;Jhon, Mu-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.2 no.2
    • /
    • pp.60-66
    • /
    • 1981
  • The hypothesis that three classes of water exist in hydrogels, namely X water (free water-like), Z-water (bound water-like), and Y water (interfacial water-like), has been verified and generally accepted. To further check the validity of this hypothesis and to study the nature of X, Y, and Z water as conformation changes, several experiments have been done using Tactic Poly(2-hydroxyethyl methacrylate) (P-HEMA) gels. Thermal expansively data for tactic P-HEMA gel was obtained. In each case of isotactic and syndiotactic P-HEMA, the higher water content gels showed an extremely sharp volume change at $0^{\circ}C$, indicating the presence of normal free water-like. Lower water content gels showed no anomalous change in thermal expansion, indicating that the water is bound water-like. The medium water content gels exhibited intermediate behavior. These results were also confirmed by bulk gel conductivity measurments. The differential scanning calorimeter(DSC) experiment was simply introduced to further verify the bound water-like quantities which was obtained by the method of dilatometry and specific conductivity. Observing the amounts of X, Y, and Z water with the change of tacticity, the similar content of bound water-like may be due to the same primary structure of isotactic and syndiotactic polymer and the difference in free and interfacial water-like content may be due to the difference in secondary and tertiary structure of tactic polymer. Therefore, as the polymer conformation varies, the free and interfacial water-like content will be varied. In order to demonstrate these concepts, Russel et al.'s CPK space-filling molecular models of isotactic and syndiotactic P-HEMA was utilized.

RHEOLOGICAL PROPERTIES OF OIL/WATER EMULSION AND OIL/LIQUID CRYSTAL/WATER SYSTEMS AND THEIR CONSUMER PERCEPTION IN HAIR CARE PRODUCTS

  • Kim, Chong-Youp;Hong, Jong-Eoun;Kim, Su-Hyun;Kang, Hak-Hee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.25 no.4 s.34
    • /
    • pp.123-131
    • /
    • 1999
  • Liquid crystal known as a rheological barrier to coalescence of oil droplets, increases emulsion stability, water-holding capacity and promotes active material penetration to skin. Some investigation for its rheological characteristics have been reported but its relations to consumer perception have been rarely published. In this study, oil/water emulsion and oil/liquid crystal/water systems were manufactured using the same composition or Behenyltrimethylammonium chloride/Cetostearyl alcohol/Lanolin oil. and rheological properties or each system were investigated with Cone and Plate rheometer. The formation of liquid crystalline phase was observed with polarized microscope and Differential Scanning Calorimeter. Continuous shear experiment, creep, yield and water holding capacity were measured for oil/water and oil/liquid crystal/water systems. The results were compared with sensory evaluations. Oil/liquid crystal/water system showed higher,viscosity at the same shear rate. higher viscoelasticity and higher yield stress than oil/water system. These properties were expected to show good spreadability and excellent richness without waxiness in hair can: products of creme type. This expectation was consistent with the results of sensory experiments. Water-holding capacity was evaluated by measuring residual water of specimens at specific temperature and relative humidity. Oil/liquid crystal/water system was proved to have higher ability to hold water in comparison with oil/water system. The results indicated that oil/liquid crystal/water system was of benefit to rheological properties creme type hair care products.

  • PDF

PHEOLOGICAL PROPERTIES OF OIL/WATER EMULSION AND OIL/LIQUID CRYSTAL/WATER SYSTEMS AND THEIR CONSUMER PERCEPTION IN HAIR CARE PRODUCTS

  • Kim, Chongyoup;Jongeoun Hong;Kim, Suhyun;Hakhee Kang
    • Proceedings of the SCSK Conference
    • /
    • 1999.10a
    • /
    • pp.123-131
    • /
    • 1999
  • Liquid crystal known as a rheological barrier to coaleseence of oil dorplets. increases. emulsion stability, water-holding capacity and promotes active material penetration to skin. Some investigation for its rheological characteristics have been reported but its relations to consumer perception have been rarely published. In this study oil/water emulsion and oil/liquid crystal/water systems were manufactured using the same composition of Behenyltrimethylammonium chloride/Cetostearyl alcohol/Lanolin oil. and rheological properties of each system were investigated with Cone and Plate rheometer. The formation of liquid crystalline phase was observed with polarized microscope and Differential Scanning Calorimeter. Continuous shear experiment, creep yield and water holding capacity were measured for oil/water and oil/liquid crystal/water systems. The results were compared with sensory evaluations. Oil/liquid crystal/water system showed higher viscosity at the same shear rate, higher viscoelasticity and higher yield stress than oil/water system. These properties were expected to show good spreadability and excellent richness without waxiness I hair care products of creme type. This expectation was consistent with the results of sensory experiments. Water-holding capacity was evaluated by measuring residual water of specimens at specific temperature and relative humidity, Oil/liquid crystal/water system was proved to have ability to hold water in comparison with oil/water system. The results indicated that oil/liquid crystal/water system was of benefit to rheological properties creme type hair care products.

  • PDF

Enhancement of Convective Heat Transfer by Using a Micro-Encapsulated Phase-Change-Material Slurry (피복된 미립 상변화물질 슬러리를 이용한 대류 열전달의 향상에 관한 연구)

  • Jung, Dong-Ju;Choi, Eun-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.9
    • /
    • pp.1277-1284
    • /
    • 2000
  • To enhance heat transfer characteristics of water, micro-encapsulated octadecane of about $10{\mu}m$ diameter was added to water. Viscosity of the slurry was measured by using a capillary tube viscometer. The measured viscosity decreased as the temperature of the slurry increased, and it increased as the fraction of the capsules in the slurry increased. Thermal characteristics of the octadecane were studied by using a differential scanning calorimeter. The melting temperature and the melting energy of the octadecane were found to be $28.6^{\circ}$ and 34.4kcal/kg, respectively. The convective heat transfer characteristics of the slurry were investigated in a flow loop with a constant heat flux test section. Friction factor of the slurry flow was found to be similar to the expected curve by Petukhov. The Nusselt number of the slurry flow was highest when the octadecane melted. Effective thermal capacity of the 14.2% slurry was found to have 1.67 times of the thermal capacity of water.

On-line Measurement of Cooling Rate of a Fermenter and its Application for Fed-batch Control (발효조의 냉각량 연속 측정 및 이를 이용한 유가배양제어)

  • Heo, Won;Hong, Gun-Pyo
    • KSBB Journal
    • /
    • v.18 no.5
    • /
    • pp.418-423
    • /
    • 2003
  • A laboratory jar fermenter was modified to measure the duration for cooling water supply and the temperatures of the coolant at the inlet and outlet of water jacket. Successful operation of temperature control and on-line measurement was achieved by adjusting optimum parameters of the Proportion-Integral-Derivative temperature controller. The variables measured on-line were used to estimate cooling rates from empirical equations comprised of the time period of cooling water supply and the temperatures of coolant. The measured cooling rate showed a good correlation to the specific growth rate during batch cultivation of E. coli. Cooling rate was measured and applied to programmed cell growth in a fed-batch cultivations. Three fed-batch cultivations were demonstrated by feeding substrate to follow the programmed cooling rates increasing exponentially.

Effect of Plasticizer on Physical Properties of Poly(vinyl acetate-co-ethylene) Emulsion (Poly(vinyl acetate-co-ethylene) 에멀젼 물성에 대한 가소제 효과)

  • Choi, Yong-Hae;Lee, Won-Ki
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.459-463
    • /
    • 2009
  • In this study, physical properties of poly(vinyl acetate-co-ethylene) (VAE) emulsion were investigated by adding different amounts of di-butyl phthalate (DBP) which is a common plasticizer of VAE. The glass transition temperature $(T_g)$ of the dried plasticized VAE emulsion film, which measured by Differential Scanning Calorimeter, was decreased with increasing the DBP contents while the viscosity of the plasticized VAE emulsion was increased with the DBP contents. These results suggest that the plasticizer in the dried VAE film can prevent the strong interaction between chains, resulted by the decrease of $T_g$. In the emulsion, however, the particle sizes were swelled by the penetration of plasticizers and then its viscosity increased with the DBP content. When the DBP was added, the mechanical properties of the plasticized VAE films, such as tensile strength, elongation and creep resistance, were decreased while the water resistance was increased.

Physical and Mechanical Properties and Fire-endurance Characteristics of Recycled Particleboards

  • Suh, Jin-Suk;Han, Tae-Hyung;Park, Joo-Saeng;Park, Jong-Young
    • Journal of the Korea Furniture Society
    • /
    • v.19 no.6
    • /
    • pp.475-486
    • /
    • 2008
  • In this study, fire-retardant chemicals were melt with mixed composition ratios of dibasic ammonium phosphate and each half of boric acid and borax in hot water, in which hammer-milled chips were immersed to increase swelling of waste particleboards. Also, fire-retardant treated particles from sawn lumber chip and recycled particleboard chip were composed in ratio of 70:30 in core layer to improve boards' properties. Retention ratio of fire-retardant chemicals for the particles for face layer was high due to high specific surface area, and that of sawn lumber chips was somewhat higher than that of recycled particleboard chips. The mixture of particles from sawn lumber chips and recycled PB of 70:30 in weight ratio exceeded bending strength of 100 $kgf/cm^2$. It seemed that the relatively greater portions of dibasic ammonium phosphate affected adversely to dimensional stability, however fire-retardants treatment resulted in distinct effect lowering formaldehyde emission such as $E_0$ type(0.5mg/$\ell$ or less) in KS F 3104. In fire-retardancy, the recycled boards with a mixed ratio of dibasic ammonium phosphate to boric acid borax(50:50 mixture) of 70% to 30% in weight satisfied fire-retardancy 3rd grade in KS F 2271, and also this composition from cone calorimeter test met same standard grade figuring total heat release of 4.6MJ/$m^2$.

  • PDF

Experimental Study on Heating Performance Characteristics of Air Source Heat Pump with Air to Water Type (공기열원 히트펌프의 난방 성능특성에 관한 실험적 연구)

  • Lee, Kwon-Jae;Kwon, Young-Chul;Chun, Chong-Keun;Park, Sam-Jin;Kwon, Jeong-Tae;Huh, Cheol
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.6
    • /
    • pp.400-405
    • /
    • 2011
  • This paper presents the heating performance characteristics of the air source heat pump with air to water type. The heating capacity, COP, P-h diagram were measured at various operating conditions, air-side temperatures, relative humidities, and inlet/outlet water temperature under the standard heating condition of KS B 6275. The experimental data for the heat pump were measured using the air-enthalpy calorimeter and the constant temperature water bath. As the air-side temperature increases, the heating capacity and COP increase. The effect of the air-side relative humidities on the heat pump performance is insignificant. The heat pump performance on inlet and outlet water temperatures and air-side temperatures(-7, -11, $-15^{\circ}C$) were studied. Heating capacity and COP increased about 27~39% with the air-side temperature increasing. Enthalpy between the front and the rear of condenser decreased about 6% by increasing of the inlet water temperature. These results can be utilized in the design of the air source heat pump system with air to water type.

Improvement of Flame-Retardant Performance of Polyurethane Foam Coated with Water Glass (물유리코팅에 따른 폴리우레탄 폼의 난연성능 개선에 대한 연구)

  • Kim, Hyeong-Jun;Park, Jewon;Na, Hyein;Lim, Hyung Mi;Chang, Gabin
    • Fire Science and Engineering
    • /
    • v.34 no.2
    • /
    • pp.7-13
    • /
    • 2020
  • In this study, water glass was applied as a coating material to a rigid polyurethane foam to improve the flame-retardant properties of the foam. The heat release rate of the cone calorimeter of the urethane foam, in which the inorganic water-glass coating layer was applied, decreased rapidly. The water glass coated on the polyurethane surface formed a glassy foam by foaming with water, which did not escape during the vitrification reaction when the foam or glass was heated. The glassy foam formed on the polyurethane foam became a fire-resistant insulation layer that inhibited the combustion of the polyurethane foam for more than 10 min. Water glass was found to improve the flame-retardant properties of the rigid polyurethane foam.

Effects of Composition on the Hydration of Blastfurnace Granulated Slag (슬래그의 조성변화가 수화반응에 미치는 영향)

  • 오희갑;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.16 no.4
    • /
    • pp.237-242
    • /
    • 1979
  • In order to improve hydration reactivity of blast furnace slag, it's composition was changed by adding of CaO. The slags were quenched in water at 1,400℃. Hydration reactivityof modified slags was studied by x-ray diffractometer, conduction calorimeter and so on. Experimental results were summarized as follows. 1. Glass content and hydration reactivity of slag depend significantly on quenching temperature of the slag melt. To enhance the reactivity, slag melts which belongs to Frenkel-type liquid, must be quenched above 1,300℃. 2. Vitrification of slag melts was confirmed as CaO/SiO2 ratio increased up to 1.57 with flux, 1.51 without flux, also their hydration reactivity was improved.

  • PDF