• Title/Summary/Keyword: Water bloom

Search Result 439, Processing Time 0.028 seconds

Exclusive correlation analysis for algae and environmental factors in weirs of four major rivers in South Korea (4대강 주요지점에서의 조류 발생인자의 배타적 상관성분석에 대한 연구)

  • Lee, Eun Hyung;Kim, Yeonhwa;Kim, Kyunghyun;Kim, Sanghyun
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.2
    • /
    • pp.155-164
    • /
    • 2016
  • Algal blooms not only destroy fish habitats but also diminish biological diversity of ecosystem which results into water quality deterioration of 4 major rivers in South Korea. The relationship between algal bloom and environmental factors had been analyzed through the cross-correlation function between concentration of chlorophyll a and other environmental factors. However, time series of cross-correlations can be affected by the stochastic structure such auto-correlated feature of other controllers. In order to remove external effect in the correlation analysis, the pre-whitening procedure was implemented into the cross correlation analysis. The modeling process is consisted of a series of procedure (e.g., model identification, parameter estimation, and diagnostic checking of selected models). This study provides the exclusive correlation relationship between algae concentration and other environmental factors. The difference between the conventional correlation using raw data and that of pre-whitened series was discussed. The process implemented in this paper is useful not only to identify exclusive environmental variables to model Chl-a concentration but also in further extensive application to configure causality in the environment.

Determination of geosmin and 2-MIB in Nakdong River using headspace solid phase microextraction and GC-MS (HS-SPME-GC/MS를 이용한 낙동강 수계 하천수 중 조류기원성 냄새물질 분석)

  • Lee, Injung;Lee, Kyoung-Lak;Lim, Tae-Hyo;Park, Jeong-Ja;Cheon, Seuk
    • Analytical Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.326-332
    • /
    • 2013
  • Geosmin and 2-methylisoborneol (2-MIB) are volatile organic compounds responsible for the majority of unpleasant taste and odor events in drinking water. Geosmin and 2-MIB are byproducts of blue-green algae (cyanobacteria) with musty and earthy odors. These compounds have odor threshold concentration at ng/L levels. It is needed to develop a sensitive method for determination of geosmin and 2-MIB to control the quality of drinking water. In this study, geosmin and 2-MIB in water samples were determined by gas chromatography-mass spectrometry (GC-MS) with headspace-solid phase microextraction (HS-SMPE). The detection limits of this method were 1.072 ng/L and 1.021 ng/L for geosmin and 2-MIB, respectively. Good accuracy and precision was also obtained by this method. Concentrations of the two compounds were measured in raw waters from Nakdong River in the cyanobacterial blooming season. Water bloom formed by cyanobacteria has been occurred currently in Nakdong River. It is needed to investigate the concentrations of geosmin and 2-MIB to control the quality of drinking water from Nakdong River. Both geosmin and 2-MIB were detected in raw waters from Nakdong River at concentrations ranging from 4 to 24 ng/L and 6 to 16 ng/L, respectively.

Spatio-temporal distributions of the newly described mixotrophic dinoflagellate Yihiella yeosuensis (Suessiaceae) in Korean coastal waters and its grazing impact on prey populations

  • Jang, Se Hyeon;Jeong, Hae Jin
    • ALGAE
    • /
    • v.35 no.1
    • /
    • pp.45-59
    • /
    • 2020
  • To investigate the spatio-temporal distributions of the mixotrophic dinoflagellate Yihiella yeosuensis in Korean coastal waters and its grazing impact on prey populations, water samples were seasonally collected from 28 stations in the East, West, and South Seas of Korea and Jeju Island from April 2015 to October 2018. The abundances of Y. yeosuensis in the water samples were quantified using quantitative real-time polymerase chain reaction (qPCR). Simultaneously, the physical and chemical properties of water from all sampled stations were determined, and the abundances of the optimal prey species of Y. yeosuensis, the prasinophyte Pyramimonas sp. and the cryptophyte Teleaulax amphioxeia, were quantified using qPCR. Y. yeosuensis has a wide distribution, as is reflected by the detection of Y. yeosuensis cells at 23 sampling stations; however, this distribution has a strong seasonality, which is indicated by its detection at 22 stations in summer but only one station in winter. The abundance of Y. yeosuensis was significantly and positively correlated with those of Pyramimonas sp. and T. amphioxeia, as well as with water temperature. The highest abundance of Y. yeosuensis was 48.5 cells mL-1 in Buan in July 2017, when the abundances of Pyramimonas sp. and T. amphioxeia were 917.6 and 210.4 cells mL-1, respectively. The growth rate of Y. yeosuensis on Pyramimonas sp., calculated by interpolating the growth rates at the same abundance, was 0.49 d-1, which is 37% of the maximum growth rate of Y. yeosuensis on Pyramimonas sp. obtained in the laboratory. Therefore, the field abundance of Pyramimonas sp. obtained in the present study can support a moderate positive growth of Y. yeosuensis. The maximum grazing coefficient for Y. yeosuensis on the co-occurring Pyramimonas sp. was 0.42 d-1, indicating that 35% of the Pyramimonas sp. population were consumed in 1 d. Therefore, the spatio-temporal distribution of Y. yeosuensis in Korean coastal waters may be affected by those of the optimal prey species and water temperature. Moreover, Y. yeosuensis may potentially have considerable grazing impacts on populations of Pyramimonas sp.

Analysis of Long-Term Monitoring Data From the Geum River Estuary (금강 하구의 장기 관측 자료 분석)

  • JEONG YONC HOOW;KIM YEONC TAE;CHAE YOUN ZOO;RHEE CHOONC WOON;KO KYUNC RAN;KIM SOH YOUNG;JEONG JU YOUNG;YANG JAE SAM
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.3
    • /
    • pp.139-144
    • /
    • 2005
  • To investigate the long-term variation of water qualities, we have daily monitored physio-chemical characteristics of surface water in the Geum River estuary from June 1996 to April 2004. We found that the water qualities were determined by three dominant factors : 1. fluvial input from Geum River ($28.3\%$), 2. chemical processes such as nitrification and phosphate addition originated from sediment resuspension and domestic sew- age input ($18.6\%$), 3. biological processes such as nutrient consumption by primary producers ($13.5\%$). The factor 1 (fluvial input) effectively affected the water quality of the estuary particularly during the normal or low river discharge. The factor 2 (chemical processes) and the factor 3 (biological processes) showed distinct seasonal differences due to their relative strengths of biological activities. The factor 3 was a governing parameter during the period of spring algal bloom in 2004. For the spring period, an empirical equation derived from the multi-regression analyses showed that the in-situ chlorophyll-a distributions in the estuarine water were successfully simulated by the phosphate concentrations and N/P ratios. Therefore we suggest that phosphate functions as a limiting factor for the primary productivity in the Geum River estuary for the dry season, especially during spring.

Cyanobacterial Blooms and Water Quality of Major Recreational Park Ponds in the Capital Region (수도권 주요 공원 연못의 수질 특성과 남조류 대발생)

  • Park, Myung-Hwan;Suh, Mi-Yeon;Hwang, Soon-Jin;Kim, Yong-Jae;Han, Myung-Soo;Kim, Baik-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.1
    • /
    • pp.54-65
    • /
    • 2008
  • The seasonal dynamics of phytoplankton and water quality were evaluated bimonthly at 7 park ponds in the capital region from October 2004 to August 2005. With out the change of water temperature $(0.4\sim26.0^{\circ}C)$, cyanobacteria dominated in park ponds such as Gyungbokgung Gyunghyaeru and Seokchon reservoir. The standing crops of phytoplankton was significant related with cell densities of cyanobacteria (r=0.993), while they did not significant correlation with environmental factors. Almost of all park ponds in the capital region were classified as eutrophic state with high TP concentrations and TN/TP ratios less than 10. Major dominant cyanobacteria were as followed; Anabaena sp., Aphanocapsa elachista, Lyngbya contorta, Merismopedia elegans, Microcystis aeruginosa, M. wesenbergii, Microcystis sp., Oscillatoria sp., Phormidium tenue, and Plectonema sp. To date, although the concentration of chlorophyll-${\alpha}$ and cyanobacterial densities in the capital region was below the 'danger' level of WHO guidelines value, the monitoring of cyanobacterial densities and its toxin (microcystin) in recreational/bath water should be continued.

Application of Spectral Indices to Drone-based Multispectral Remote Sensing for Algal Bloom Monitoring in the River (하천 녹조 모니터링을 위한 드론 다중분광영상의 분광지수 적용성 평가)

  • Choe, Eunyoung;Jung, Kyung Mi;Yoon, Jong-Su;Jang, Jong Hee;Kim, Mi-Jung;Lee, Ho Joong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.419-430
    • /
    • 2021
  • Remote sensing techniques using drone-based multispectral image were studied for fast and two-dimensional monitoring of algal blooms in the river. Drone is anticipated to be useful for algal bloom monitoring because of easy access to the field, high spatial resolution, and lowering atmospheric light scattering. In addition, application of multispectral sensors could make image processing and analysis procedures simple, fast, and standardized. Spectral indices derived from the active spectrum of photosynthetic pigments in terrestrial plants and phytoplankton were tested for estimating chlorophyll-a concentrations (Chl-a conc.) from drone-based multispectral image. Spectral indices containing the red-edge band showed high relationships with Chl-a conc. and especially, 3-band model (3BM) and normalized difference chlorophyll index (NDCI) were performed well (R2=0.86, RMSE=7.5). NDCI uses just two spectral bands, red and red-edge, and provides normalized values, so that data processing becomes simple and rapid. The 3BM which was tuned for accurate prediction of Chl-a conc. in productive water bodies adopts originally two spectral bands in the red-edge range, 720 and 760 nm, but here, the near-infrared band replaced the longer red-edge band because the multispectral sensor in this study had only one shorter red-edge band. This index is expected to predict more accurately Chl-a conc. using the sensor specialized with the red-edge range.

Effects of temperature on the growth and ingestion rates of the newly described mixotrophic dinoflagellate Yihiella yeosuensis and its two optimal prey species

  • Kang, Hee Chang;Jeong, Hae Jin;Lim, An Suk;Ok, Jin Hee;You, Ji Hyun;Park, Sang Ah;Lee, Sung Yeon;Eom, Se Hee
    • ALGAE
    • /
    • v.35 no.3
    • /
    • pp.263-275
    • /
    • 2020
  • Water temperature is known to affect the growth and feeding of marine dinoflagellates. Each dinoflagellate species grows well at a certain optimal temperature but dies at very cold and hot temperatures. Thus, changes in water temperatures driven by global warming and extremely high or low temperatures can affect the distribution of dinoflagellates. Yihiella yeosuensis is a mixotrophic dinoflagellate that can feed on only the cryptophyte Teleaulax amphioxeia and the chlorophyte Pyramimonas sp. Furthermore, it grows fast mixotrophically but rarely grows photosynthetically. We explored the direct and indirect effects of water temperature on the growth and ingestion rates of Y. yeosuensis feeding on T. amphioxeia and the growth rates of T. amphioxeia and Pyramimonas sp. under 7 different water temperatures (5-35℃). Both the autotrophic and mixotrophic growth rates of Y. yeosuensis on T. amphioxeia were significantly affected by temperature. Under the mixotrophic and autotrophic conditions, Y. yeosuensis survived at 10-25℃, but died at 5℃ and ≥30℃. The maximum mixotrophic growth rate of Y. yeosuensis on T. amphioxeia (1.16 d-1) was achieved at 25℃, whereas the maximum autotrophic growth rate (0.16 d-1) was achieved at 15℃. The maximum ingestion rate of Y. yeosuensis on T. amphioxeia (0.24 ng C predator-1 d-1) was achieved at 25℃. The cells of T. amphioxeia survived at 10-25℃, but died at 5 and ≥30℃. The cells of Pyramimonas sp. survived at 5-25℃, but died at 30℃. The maximum growth rate of T. amphioxeia (0.72 d-1) and Pyramimonas sp. (0.75 d-1) was achieved at 25℃. The abundance of Y. yeosuensis is expected to be high at 25℃, at which its two prey species have their highest growth rates, whereas Y. yeosuensis is expected to be rare or absent at 5℃ or ≥30℃ at which its two prey species do not survive or grow. Therefore, temperature can directly or indirectly affect the population dynamics and distribution of Y. yeosuensis.

Temporal Variation of Water Quality of the Western Chinhae Bay in Summer (진해만 서부해역의 하계 수질의 시간변동 특성)

  • Cho Hyeon-Seo;Lee Dae-In;Yoon Yang-Ho;Lee Moon-Ok;Kim Dong-Myung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.1
    • /
    • pp.13-21
    • /
    • 2004
  • Temporal changes of Chl-α, physical and chemical factors were investigated by diurnal observation at 2-hour interval at three fixed stations in the western Chinhae Bay from 12 Aug. to 13 Aug. 1999. Difference of dissolved oxygen between surface and bottom layer was maximum when the thermocline were strong. Organic distribution such as COD was affected by the growth of phytoplankton. Limitting factor was nitrogen, that is, inorganic nitrogen plays a significant role on regulating the algal growth. Surface distribution of dissolved inorganic nitrogen was very low compared to bottom layer by uptake of organisms. Maximum value of Chl-α at station C2 and C11 were observed from subsurface layer, ranges of which exceeded possibility concentration of red tide outbreak, 10 mg/㎥. On the other hand, that of C15 exist at surface layer. In this area, DIN and DIP concentrations increased by input sources such as rainfall and benthic flux before the bloom of phytoplankton. Accumulation of phytoplankton occurred at subsurface layer by the rapid uptake of DIN, especially nitrate ion, when strong thermocline existed as approach to the afternoon, which led to the increase of organics in water column and oxygen deficiency water mass at bottom layer until late at evening. Since then, DIN increases gradually as water temperature decrease to minimum. The quantitative understanding of nitrogen of fluxed to and from the various sources is necessary for environmental management.

  • PDF

A Case Study of Biologically Derived Algicidal Substances (Naphthoquinone Derivative) for Mitigate of Stephanodiscus and It's Ecological Changing Monitoring (생물유래 살조물질 Naphthoquinone 유도체의 규조 Stephanodiscus 제어 효과 및 생태계 변화 모니터링: A case study)

  • Joo, Jae-Hyoung;Park, Bum Soo;Kim, Sae Hee;Han, Myung-Soo
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.1
    • /
    • pp.72-81
    • /
    • 2020
  • Blooms of the small centric diatom Stephanodiscus is quite occasional in winter season in temperate freshwater ecosystems. Often, it leads to degradation of water quality and affects quality of supplied drinking water. In previous studies, naphthoquinone (NQ) compounds have been shown to be effective and selective for controlling winter bloom species Stephanodiscus hantzschii. We conducted a 5 ton scale mesocosm experiment to investigate the effects of NQ on native Stephanodiscus sp. collected from Nakdonggang River in water. After treatment with NQ 4-6 compound (0.2 μM), the cell density of Stephanodiscus sp. was rapidly reduced from 5 × 103 cells mL-1 to 0.2 × 103 cells mL-1 for 10 days. Additionally, NQ 4-6 compound did not affect physicochemical factors (water temperature, dissolved oxygen, pH, conductivity, nutrients) and biological factors (bacteria, heterotrophic nanoflagellates, zooplankton). Therefore, these findings suggest that the NQ 4-6 compound has potential as an alternative algicidal substances to effectively mitigate natural Stephanodiscus sp. blooms, and the application of NQ 4-6 compound will restore the healthy aquatic ecosystems.

Stable Carbon and Nitrogen Isotopes of Sinking Particles in the Eastern Bransfield Strait (Antarctica)

  • Khim, Boo-Keun;Kim, Dong-Seon;Shin, Hyoung-Chul;Kim, Dong-Yup
    • Ocean Science Journal
    • /
    • v.40 no.3
    • /
    • pp.167-176
    • /
    • 2005
  • A time-series sediment trap was deployed at 1,034 m water depth in the eastern Bransfield Strait for a complete year from December 25, 1998 to December 24, 1999. About 99% of total mass flux was trapped during an austral summer, showing distinct seasonal variation. Biogenic particles (biogenic opal, particulate organic carbon, and calcium carbonate) account for about two thirds of annual total mass flux $(49.2\;g\;m^{-2})$, among which biogenic opal flux is the most dominant (42% of the total flux). A positive relationship (except January) between biogenic opal and total organic carbon fluxes suggests that these two variables were coupled, due to the surface-water production (mainly diatoms). The relatively low $\delta^{13}C$ values of settling particles result from effects on C-fixation processes at low temperature and the high $CO_2$ availability to phytoplankton. The correspondingly low $\delta^{l5}N$ values are due to intense and steady input of nitrates into surface waters, reflecting an unlikely nitrate isotope fractionation by degree of surface-water production. The $\delta^{l5}N$ and $\delta^{l3}C$ values of sinking particles increased from the beginning to the end of a presumed phytoplankton bloom, except for anomalous $\delta^{l5}N$ values. Krill and the zooplankton fecal pellets, the most important carriers of sinking particles, may have contributed gradually to the increasing $\delta^{l3}C$ values towards the unproductive period through the biomodification of the $\delta^{l3}C$ values in the food web, respiring preferentially and selectively $^{12}C$ atoms. Correspondingly, the increasing $\delta^{l5}N$ values in the intermediate-water trap are likely associated with a switch in source from diatom aggregates to some remains of zooplankton, because organic matter dominated by diatom may be more liable and prone to remineralization, leading to greater isotopic alteration. In particular, the tendency for abnormally high $\delta^{l5}N$ values in February seems to be enigmatic. A specific species dominancy during the production may be suggested as a possible and speculative reason.