• Title/Summary/Keyword: Water availability

Search Result 584, Processing Time 0.029 seconds

An Experimental Study of Water Absorption Characteristics for Generator Stator Winding Insulation (발전기 고정자 권선 절연재 흡습 특성에 관한 실험적 연구)

  • Bae, Y.C.;Lee, D.S.;Kim, H.S.;Kim, Y.H.;Lee, H.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.426-431
    • /
    • 2004
  • Leaking water coolant into stator electrical insulation is a growing concern for the aging water-cooled generator since leaks in the generator water-cooled stator winding can affect machine availability and insulation life. But a domestic techniques of such field are insufficient and depend wholly on GE or TOSHIBA technique. Therefore this paper introduces measuring principle and developed measuring system, which has been used to detecting wet absorption. We accomplished the experiment with a stator promotion of virtue which is used in actual power plant. Also, Experimental method of generator stator winding, which is investigated into wet absorption test.

  • PDF

COMPARATIVE STUDY ON DEWATERING SLUDGE WITH SOLAR DRYING AND SIPHON METHODS

  • Tong, Jun;Yasufuku, Noriyuki;Omine, Kiyoshi;Kobayashi, Taizo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.125-128
    • /
    • 2010
  • A large quantity of purified water sludge is generated in modern cities around the world. Dewatering is essential to reduce the volumes transported off-site for disposal. Traditionally employed methods such as solar drying methods are time-consuming. There are urgent demands for developing alternatives to dewater the sludge in a less time-consuming manner. In this paper, siphon method is proposed to dewater the high-water-content sludge with plastic drainage plate installed horizontally. A group of comparative tests are conducted to preliminarily investigate the dewatering behavior of the purified water sludge with siphon and solar drying methods, respectively. On the basis of the test results, the availability and effectiveness of the new method is verified. It may provide an innovative solution to treat the purified water sludge more effectively.

  • PDF

Wind energy into the future: The challenge of deep-water wind farms

  • Ricciardelli, Francesco;Maienza, Carmela;Vardaroglu, Mustafa;Avossa, Alberto Maria
    • Wind and Structures
    • /
    • v.32 no.4
    • /
    • pp.321-340
    • /
    • 2021
  • In 2019, 5.6% of the total energy produced worldwide came from wind. Offshore wind generation is still a small portion of the total wind generation, yet its growth is exponential. Higher availability of sites, larger producibility and potentially lower environmental impacts make offshore wind generation attractive. On the other hand, as the water depth increases, fixed foundations are no more viable, and the new frontier is that of floating foundations. This paper brings an overview of why and how offshore wind energy should move deep water; it contains material from the Keynote Lecture given by the first author at the ACEM20/Structures20 Conference, held in Seoul in August 2020. The paper is organized into four sections: the first giving general concepts about wind generation especially offshore, the second and the third considering economic and technical aspects, respectively, of offshore deep-water wind generation, in the fourth, some challenges of floating offshore wind generation are presented and some conclusions are drawn.

Applicability Analysis of Water Provisioning Services Quantification Models of Forest Ecosystem (산림생태계 수자원 공급서비스 계량화 모형의 국내적용성 분석)

  • Choi, Hyun-Ah;Lee, Woo-Kyun;Song, Cholho;Lee, Jong Yeol;Jeon, Seong Woo;Kim, Joon Sun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.4
    • /
    • pp.1-15
    • /
    • 2014
  • Forest ecosystems generate variety of important goods and services for human well-being. As a growing concern of climate change and water shortage, it is necessary to quantify, model and map water balance in forest. In this study, we have analyzed 11 overseas forest water supply models (AIM, ATEAM, CENTURY, (E)SWAT, GUMBO, InVEST, PLM, SAVANNA, WaSSI, WaterGAP, WBM) and compared their scale, input and out data, availability of the models and analyzed the applicability of the models to Korea. As a result, InVEST and WaterGAP model appeared to be applicable for quantifying water provisioning services in Korea. A systematic approach for applying to evaluate water balance in forest was suggested based on our quantification approach.

A review of nanomaterials based membranes for removal of contaminants from polluted waters

  • Amin, Muhammad T.;Alazba, Abdulrahman A.
    • Membrane and Water Treatment
    • /
    • v.5 no.2
    • /
    • pp.123-146
    • /
    • 2014
  • Safe water has becoming a competitive resource in many parts of the world due to increasing population, prolonged droughts, climate change etc. The development of economical and stable materials and methods for providing the fresh water in adequate amounts is the need of the water industry. Nanomaterials have unique characteristics e.g., large surface areas, size, shape, and dimensions etc. that make them particularly attractive for removing various contaminants from polluted waters. Nanotechnology based multifunctional and highly efficient membrane processes are providing affordable solutions in the new era that do not rely on large infrastructures or centralizes systems. The objective of the current study is to review the possible applications of the membrane based nanomaterials/composites for the removal of various contaminations from polluted waters. The article will briefly overview the availability and practice of different nanomaterials based membranes for removal of bacteria and viruses, organic compounds and inorganic solutes etc. present in surface water, ground water, seawater and/or industrial water. Finally, recommendations are made based on the current practices of nanofiltration membranes in water industry for a stand-alone membrane filtration system in removing various types of contaminants from polluted waters.

Reevaluation of Design Frequency of Drought and Water Supply Safety for Agricultural Reservoirs under Changing Climate and Farming Methods in Paddy Field (기상 및 영농방식 변화에 따른 농업용 저수지의 설계한발빈도 및 이수안전도 재평가)

  • Nam, Won-Ho;Kwon, Hyung Joong;Choi, Kyung-Sook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.1
    • /
    • pp.121-131
    • /
    • 2018
  • Past climate change influences multiple environmental aspects, certain of which are specifically related to agricultural water resources such as water supply and demand. Changes on rainfall and hydrologic patterns can increases the occurrence of reservoir water shortage and affect the future availability of agricultural water resources. It is a main concern for sustainable development in agricultural water resources management to evaluate adaptation capability of water supply under the changing climate and farming methods in paddy field. The purpose of this study is an evaluation method of design frequency of drought and water supply safety for agricultural reservoirs to investigate evidence of climate change occurrences at a local scale. Thus, it is a recommended practice in the development of water supply management strategies on reservoir operation under changing climate and farming methods in paddy field.

Water Yield Computation and the Evaluation of Urbanization in the Bagmati Basin of Nepal

  • Bastola, Shiksha;Seong, Yeon-Jeong;Lee, Sanghyup;Jung, Younghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.106-106
    • /
    • 2018
  • Ecosystem service valuation is a crucial step for the sustainable management of watershed. In the context of various ecosystem services provided by watershed, this study, particularly deals with water yield computation in Bagmati Basin of Nepal. The water availability per population in Bagmati Basin is lowest compared to other basins in Nepal. Also, the rate of urbanization is rapidly growing over a decade. In this regard, the objectives of this study are 1) to compute the total water yield of the basin along with computation on a sub-watershed scale, and 2) Study the impacts of land use change on water yield based on CLUE-S model. For the study, Integrated Valuation of Environmental Services and Tradeoffs (InVEST), a popular model for ecosystem service assessment based on Budyko hydrological method is used to compute water yield. As well, CLUE-S model is used to study land use change, which is further related to study variation on water yield. The sub-watershed wise outcome of the study is expected to provide the guidelines for the effective and economic management of a watershed on a regional scale.

  • PDF

Climate change impact assessment of agricultural reservoir using system dynamics model: focus on Seongju reservoir

  • Choi, Eunhyuk
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.2
    • /
    • pp.311-331
    • /
    • 2021
  • Climate change with extreme hydrological events has become a significant concern for agricultural water systems. Climate change affects not only irrigation availability but also agricultural water requirement. In response, adaptation strategies with soft and hard options have been considered to mitigate the impacts from climate change. However, their implementation has become progressively challenging and complex due to the interconnected impacts of climate change with socio-economic change in agricultural circumstances, and this can generate more uncertainty and complexity in the adaptive management of the agricultural water systems. This study was carried out for the agricultural water supply system in Seongju dam watershed in Seonju-gun, Gyeongbuk in South Korea. The first step is to identify system disturbances. Climate variation and socio-economic components with historical and forecast data were investigated Then, as the second step, problematic trends of the critical performance were identified for the historical and future climate scenarios. As the third step, a system structure was built with a dynamic hypothesis (causal loop diagram) to understand Seongju water system features and interactions with multiple feedbacks across system components in water, agriculture, and socio-economic sectors related to the case study water system. Then, as the fourth step, a mathematical SD (system dynamics) model was developed based on the dynamic hypothesis, including sub-models related to dam reservoir, irrigation channel, irrigation demand, farming income, and labor force, and the fidelity of the SD model to the Seongju water system was checked.

Quantifying Energy Consumption to the Level of Service Pressure in Water Distribution Network

  • Marlim, Malvin S.;Choi, Jeongwook;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.458-458
    • /
    • 2022
  • It is essential to reduce global carbon emissions, mainly from energy use. The water supply and distribution sector is a vital part of human society and is one of the primary energy consumers. The procurement and distribution of water require electricity to operate the pump to deliver water to users with sufficient pressure. As the water users are spatially distributed over a wide area, the energy required to deliver water to each user differs depending on the corresponding supplying element (reservoir, tank, pipe, pump, and valve). This difference in energy required for each user also comes with a difference in pressure availability which affects the level of service for individual users and the whole network. Typically, there is a disproportion where users close to the source experience excessively high pressure with low energy consumption. In contrast, remote users need more energy to get the minimum pressure. This study proposes the Energy Return Index (ERI) to quantify the pressure return from particular energy consumption to supply water to each node. The disproportionality can be quantified and identified in the network using the proposed ERI. The index can be applied to optimize the network elements such as pump operation and tank location/size to reach a balanced energy consumption with the appropriate level of service.

  • PDF

Diurnal changes of Tissue Water Relations in Two Allopatric Tree Species (이소적 두 수종의 수분관계 일변화)

  • Park, Yong-Mok
    • The Korean Journal of Ecology
    • /
    • v.19 no.5
    • /
    • pp.453-463
    • /
    • 1996
  • Diurnal changes of microclimatic conditions and tissue water relations were measured at two sites where Carpinus laxiflora and C. cordata were allopatrically distributed. The microclimatic conditions at a site where C. laxiflora was distributed produced severe water stress condition during summer months. Daily maximum temperature reached $30.4^\circC$ and the highest vapor pressure deficit was 1.31 KPa when 13 rainless days were continued. During this period soil water content decreased to below the field capacity even at a depth of 20 cm and xylem pressure potential also decreased to ­2.04 MPa. However, turgor potential was maintained more than 0.4 MPa. Patterns of stomatal conductance were changed with evaporative demand and soil water availability. On the other hand, microclimatic conditions at a site where C. cordata was distributed were moderate water strees condition compared with those at a site C. laxiflora was distributed. Though soil water content was maintained above field capacity C. cordata showed a remarkable decrease in turgor potential and stomatal conductance throughout the experiment. These results indicate that there is a difference in habitat characteristics between the two species and C. laxiflora is more resistant than C. cordata to water stress.

  • PDF