• Title/Summary/Keyword: Water area

Search Result 11,315, Processing Time 0.043 seconds

Optimum Geometry of Glass Lined HOMEBASE Impeller for Gas-Liquid System of Low Viscosity Liquid (저점도 액 통기 교반용 글라스라이닝 홈베이스 임펠러의 최적 형상)

  • Koh, Seung-Tae
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.542-547
    • /
    • 2021
  • Glass lined impellers are corrosion resistant to most chemicals, including strong acids, and also have a smooth, non-stick surface, easy to clean and free from impurities in the process. Glass lined home base impeller is a multi-purpose impeller designed to stir a wide viscosity range of liquids from low viscosity fluids to high viscosity fluids, among others, cell culture, yeast culture, and beer fermentation pots, especially used for air-water system breathable stirring. The glass lining for HB impellers, which are simple in structure and competitive in performance, is essential to have upper and lower division in order to make the joint area between the impeller and shaft as small as possible. The upper and lower division of the impeller hardly affects the mixing performance, but the aeration performance. In this study, in order to optimize the shape of the Glass Lining HB impeller, a study was conducted on the effect of the angle between the upper and lower impellers, the clearance between the impellers, and the number of baffles on the aeration power. The optimal shape and baffle plate conditions for the Glass lined HB impeller were derived through the study results that the angle and the clearance between the upper and lower impellers decreased the ration of the power consumption with aeration Pg and that without aeration P0, Pg/P0.

Effect of fattening period on growth performance, carcass characteristics, and economic traits of Holstein steers

  • Kim, Sung Il;Park, Sungkwon;Myung, Jeong Hwan;Jo, Young Min;Choi, Chang Bon;Jung, Keun Ki
    • Journal of Animal Science and Technology
    • /
    • v.63 no.5
    • /
    • pp.1008-1017
    • /
    • 2021
  • This study was conducted to investigate the effect of different fattening periods on the growth performance, carcass characteristics, and economic traits of Holstein steers. Sixty Holstein steers (8.0 ± 0.28 months old) with an average body weight (BW) of 231.88 ± 2.61 kg, were randomly allocated to five different fattening period treatments: 20, 21, 22, 23, and 24 months (n = 12 in each treatment group). Final BW and average daily gain (ADG) did not differ among the treatment groups during the early fattening period. At the late stage of the fattening period, the final BW of steers in the 24-month treatment group (812.84 kg) was greater (p < 0.05) than that of steers in the 20-month treatment group (750.39 kg). During the same period, steers in the 20- and 21-month treatment groups had a significantly higher (p < 0.05) ADG than those in the 22-month treatment group. The highest ADG (1.36 kg/day) was found in the 20-month treatment group (1.36), followed by the 21- (1.33 kg/day), 22- (1.22 kg/day), 23- (1.21 kg/day), and 24- (1.14 kg/day) month treatment groups. The feed conversion ratio (FCR) increased as the fattening period increased, and the FCR was 12.88% lower in the 20-month treatment group than in the 24-month treatment group. However, no significant differences were detected in back-fat thickness, loin area, marbling score, and chemical characteristics (water, crude protein, and crude fat content) among the treatment groups. The composition of fatty acids including C18:0, C18:1, saturated fatty acids, unsaturated fatty acids, and poly-unsaturated fatty acids did not differ among the experimental groups. As the fattening period increased, production costs increased, resulting in a decrease in gross income. The gross income for steers in the 24-month treatment group was 35.8% and 23.5% lower than that for steers in the 20- and 21-month treatment groups, respectively. Taken together, the best performance, including the ADG, FCR, and gross income, was obtained when the fattening program of the Holstein steers lasted 20 months.

A Numerical Study of the Performance Assessment of Coupled Thermo-Hydro-Mechanical (THM) Processes in Improved Korean Reference Disposal System (KRS+) for High-Level Radioactive Waste (수치해석을 활용한 향상된 한국형 기준 고준위방사성폐기물 처분시스템의 열-수리-역학적 복합거동 성능평가)

  • Kim, Kwang-Il;Lee, Changsoo;Kim, Jin-Seop
    • Tunnel and Underground Space
    • /
    • v.31 no.4
    • /
    • pp.221-242
    • /
    • 2021
  • A numerical study of the performance assesment of coupled thermo-hydro-mechanical (THM) processes in improved Korean reference disposal system (KRS+) for high-level radioactive waste is conducted using TOUGH2-MP/FLAC3D simulator. Decay heat from high-level radioactive waste increases the temperature of the repository, and it decreases as decay heat is reduced. The maximum temperature of the repository is below a maximum temperature criterion of 100℃. Saturation of bentonite buffer adjacent to the canister is initially reduced due to pore water evaporation induced by temperature increase. Bentonite buffer is saturated 250 years after the disposal of high-level radioactive waste by inflow of groundwater from the surrounding rock mass. Initial saturation of rock mass decreases as groundwater in rock mass is moved to bentnonite buffer by suction, but rock mass is saturated after inflow of groundwater from the far-field area. Stress changes at rock mass are compared to the Mohr-Coulomb failure criterion and the spalling strength in order to investigate the potential rock failure by thermal stress and swelling pressure. Additional simulations are conducted with the reduced spacing of deposition holes. The maximum temperature of bentonite buffer exceeds 100℃ as deposition hole spacing is smaller than 5.5 m. However, temperature of about 56.1% volume of bentonite buffer is below 90℃. The methodology of numerical modeling used in this study can be applied to the performance assessment of coupled THM processes for high-level radioactive waste repositories with various input parameters and geological conditions such as site-specific stress models and geothermal gradients.

Long-term Effects on Forest Biomass under Climate Change Scenarios Using LANDIS-II - A case study on Yoengdong-gun in Chungcheongbuk-do, Korea - (산림경관천이모델(LANDIS-II)를 이용한 기후변화 시나리오에 따른 산림의 생물량 장기변화 추정 연구 -충청북도 영동군 학산면 봉소리 일대 산림을 중심으로 -)

  • Choi, Young-Eun;Choi, Jae-Yong;Kim, Whee-Moon;Kim, Seoung-Yeal;Song, Won-Kyong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.5
    • /
    • pp.27-43
    • /
    • 2019
  • This study applied the LANDIS-II model to the forest vegetation of the study area in Yeongdong-gun, Korea to identify climate effects on ecosystems of forest vegetation. The main purpose of the study is to examine the long-term changes in forest aboveground biomass(AGB) under three different climate change scenarios; The baseline climate scenario is to maintain the current climate condition; the RCP 4.5 scenario is a stabilization scenario to employ of technologies and strategies for reducing greenhouse gas emissions; the RCP 8.5 scenario is increasing greenhouse gas emissions over time representative with 936ppm of $CO_2$ concentration by 2100. The vegetation survey and tree-ring analysis were conducted to work out the initial vegetation maps and data for operation of the LANDIS model. Six types of forest vegetation communities were found including Quercus mongolica - Pinus densiflora community, Quercus mongolica community, Pinus densiflora community, Quercus variabilis-Quercus acutissima community, Larix leptolepis afforestation and Pinus koraiensis afforestation. As for changes in total AGB under three climate change scenarios, it was found that RCP 4.5 scenario featured the highest rate of increase in AGB whereas RCP 8.5 scenario yielded the lowest rate of increase. These results suggest that moderately elevated temperatures and $CO_2$ concentrations helped the biomass flourish as photosynthesis and water use efficiency increased, but huge increase in temperature ($above+4.0^{\circ}C$) has resulted in the increased respiration with increasing temperature. Consequently, Species productivity(Biomass) of trees decrease as the temperature is elevated drastically. It has been confirmed that the dominant species in all scenarios was Quercus mongolica. Like the trends shown in the changes of total AGB, it revealed the biggest increase in the AGB of Quercus mongolica under the RCP 4.5 scenario. AGB of Quercus mongolica and Quercus variabilis decreased in the RCP 4.5 and RCP 8.5 scenarios after 2050 but have much higher growth rates of the AGB starting from 2050 under the baseline scenario. Under all scenarios, the AGB of coniferous species was eventually perished in 2100. In particular they were extinguished in early stages of the RCP 4.5 and RCP 8.5 scenarios. This is because of natural selection of communities by successions and the failure to adapt to climate change. The results of the study could be expected to be effectively utilized to predict changes of the forest ecosystems due to climate change and to be used as basic data for establishing strategies for adaptation climate changes and the management plans for forest vegetation restoration in ecological restoration fields.

Correction Algorithm of Errors by Seagrasses in Coastal Bathymetry Surveying Using Drone and HD Camera (드론과 HD 카메라를 이용한 수심측량시 잘피에 의한 오차제거 알고리즘)

  • Kim, Gyeongyeop;Choi, Gunhwan;Ahn, Kyungmo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.553-560
    • /
    • 2020
  • This paper presents an algorithm for identifying and eliminating errors by seagrasses in coastal bathymetry surveying using drone and HD camera. Survey errors due to seagrasses were identified, segmentated and eliminated using a L∗a∗b color space model. Bathymetry survey using a drone and HD camera has many advantages over conventional survey methods such as ship-board acoustic sounder or manual level survey which are time consuming and expensive. However, errors caused by sea bed reflectance due to seagrasses habitat hamper the development of new surveying tool. Seagrasses are the flowering plants which start to grow in November and flourish to maximum density until April in Korea. We developed a new algorithm for identifying seagrasses habitat locations and eliminating errors due to seagrasses to get the accurate depth survey data. We tested our algorithm at Wolpo beach. Bathymetry survey data which were obtained using a drone with HD camera and calibrated to eliminate errors due to seagrasses, were compared with depth survey data obtained using ship-board multi-beam acoustic sounder. The abnormal bathymetry data which are defined as the excess of 1.5 times of a standard deviation of random errors, are composed of 8.6% of the test site of area of 200 m by 300 m. By applying the developed algorithm, 92% of abnnormal bathymetry data were successfully eliminated and 33% of RMS errors were reduced.

A Study on Minimization of Harbor Oscillations by Infragravity Waves Using Permeable Breakwater (투과제를 이용한 중력외파의 항내 수면진동 저감 방법에 대한 연구)

  • Kwak, Moon Su;Jeong, Weon Mu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.434-445
    • /
    • 2020
  • In this study, the minimization of harbor oscillation using permeable breakwater was applied to the actual harbor and investigated an effect of minimization by computer simulation in order to take into account the water quality problems and measures of harbor oscillation by infragravity waves at the same time. The study site is Mukho harbor located at East coast of Korea that harbor oscillation has been occurred frequently. The infragravity waves obtained by analyzing the observed field data for five years focused on the distribution between wave periods of 40 s and 70 s and wave heights in less than 0.1 m was 94% of analyzing data. The target wave periods was 68.0 s. The most effective method of minimization of harbor oscillation by infragravity waves was to install a detached permeable breakwater with transmission coefficient of 0.3 on the outside harbor and replace some area of the vertical wall in the harbor with wave energy dissipating structure to achieve a reflectivity of 0.9 or less. The amplitude reduction rate of this method shown in 27.4%. And the effect of the difference in transmission coefficient of permeable breakwater on the reduction rate of the amplitude was not significant.

Susceptibility of Myzus persicae on Potato field and Riptortus clavatus on Soybean field to Insecticides treated by Multi-copter (농업용 멀티콥터를 활용한 감자의 복숭아혹진딧물과 콩의 톱다리개미허리노린재의 약제방제 효율)

  • Park, Bueyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.231-236
    • /
    • 2021
  • The Aphid, Myzus persicae, and the bean bug, Riptortus clavatus, are major insects in crops. This study examined the insecticide susceptibility and phytotoxicity of insecticides dispersed using an Unmanned Aerial Vehicle (UAV, multi-copter) against the insects. Sulfoxaflor suspension concentrate (SC, 16X) on potato fields and etofenprox, methoxyfenzide suspo-emulsion(SE, 8X) on soybean fields were dispersed after deploying water-sensitive paper within the field to measure the distribution pattern and coverage index of the falling insecticide. Both insecticides showed a controlled mortality of 76.4% against aphids and 97.5% and 94.4% against the 2nd nymphal, and 5th nymphal stage of the bugs, respectively. The droplet distribution was less than 0.5mm, and coverage analysis revealed an inside and outside coverage of 3.1 and 1.6, respectively. The surrounding area was affected by insecticide spraying using a multi-copter. This study is expected to help expand UAV control and use it safely in the future.

A Study on the Habitat Suitability Index (HSI) of 'Hynobius leechii' in Central Forest Area, Korea (중부 산림지역 내 도롱뇽 서식지 적합성 지수(HSI)에 관한 연구)

  • Ko, Kyu Young;Koo, Bon Hak
    • Journal of Wetlands Research
    • /
    • v.24 no.4
    • /
    • pp.213-223
    • /
    • 2022
  • This study was conducted to establish a Habitat Suitability index (HSI) based on literature research and field surveys on ecology and habitat of 'Hynobius leechii'. And this study will be used as basic data for qualitative evaluation of habitat environment. The survey sites were divided into natural habitats close to the prototype habitat and artificial restoration areas where Hynobius leechii was monitored. So the types of habitats were diversified. Hynobius leechii is a vulnerable species to climate change because it is affected by the microhabitat and has low mobility. HSI variables of Hynobius leechii were extracted through domestic and overseas literature, and standards were extracted from literature research and field survey. The standards were presented as a value of the physical allowable category in consideration of realization. To verify the study, an in-depth consultation was conducted by amphibians experts. HSI variables of Hynobius leechii were included 9 variables such as Overstory canopy cover(%), Understory cover(%), Water-pH, Soil-pH, Soil relative humidity(%), Leaf litter depth(cm), Rock substrates (%), Type of Coarse woody, Distance from Street or Pollutant(m).

Reconfiguration of Physical Structure of Vegetation by Voxelization Based on 3D Point Clouds (3차원 포인트 클라우드 기반 복셀화에 의한 식생의 물리적 구조 재구현)

  • Ahn, Myeonghui;Jang, Eun-kyung;Bae, Inhyeok;Ji, Un
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.571-581
    • /
    • 2020
  • Vegetation affects water level change and flow resistance in rivers and impacts waterway ecosystems as a whole. Therefore, it is important to have accurate information about the species, shape, and size of any river vegetation. However, it is not easy to collect full vegetation data on-site, so recent studies have attempted to obtain large amounts of vegetation data using terrestrial laser scanning (TLS). Also, due to the complex shape of vegetation, it is not easy to obtain accurate information about the canopy area, and there are limitations due to a complex range of variables. Therefore, the physical structure of vegetation was analyzed in this study by reconfiguring high-resolution point cloud data collected through 3-dimensional terrestrial laser scanning (3D TLS) in a voxel. Each physical structure was analyzed under three different conditions: a simple vegetation formation without leaves, a complete formation with leaves, and a patch-scale vegetation formation. In the raw data, the outlier and unnecessary data were filtered and removed by Statistical Outlier Removal (SOR), resulting in 17%, 26%, and 25% of data being removed, respectively. Also, vegetation volume by voxel size was reconfigured from post-processed point clouds and compared with vegetation volume; the analysis showed that the margin of error was 8%, 25%, and 63% for each condition, respectively. The larger the size of the target sample, the larger the error. The vegetation surface looked visually similar when resizing the voxel; however, the volume of the entire vegetation was susceptible to error.

Analysis of Propagation Environment for Selecting R-Mode Reference and Integrity Station (R-Mode 보정국과 감시국 선정을 위한 전파환경 분석에 관한 연구)

  • Jeon, Joong-Sung;Jeong, Hae-Sang;Gug, Seung-Gi
    • Journal of Navigation and Port Research
    • /
    • v.45 no.1
    • /
    • pp.26-32
    • /
    • 2021
  • In ocean field, the spread of the Fourth Industrial Revolution based on information and communication technology requires high precision and stable PNT&D (Position, Navigation, Timing and Data). As the IMO (International Maritime Organization) and IALA (The International Association of Marine Aids to Navigation and Lighthouse Authorities) are requiring backup systems due to mitigate vulnerabilities and the increase of dependency on GNSS (Global Navigation Satellite System), Korea is conducting a research & development of R-Mode. An DGPS (Differentiate Global Positioning System) reference station that uses MF, an existing maritime infrastructure, and AIS (Automatic Identification System) base stations that use 34 integrity station and VHF will be utilized in this study to avoid redundant investment. Because there are radio shadow areas that display low signal levels in the west sea, the establishment of new R-Mode reference and integrity station will be intended to resolve problems regrading the radio shadow area. Because the frequency has a characteristic in that radio wave transmits well along the ground (water surface) in low frequency band, simulation and measurement were conducted therefore this paper to propose candidate sites for R-Mode reference and integrity station resulted through p wave's propagation characteristics analysis. Using this paper, R-Mode reference and integrity station can be established at appropriate locations to resolve radio shadow areas in other regions.