• Title/Summary/Keyword: Water and Heat Transport

Search Result 185, Processing Time 0.02 seconds

The Sensitivity Analysis for LRV Opening Pressure in CANDU (중수로 원전에서 액체방출밸브의 개방압력에 대한 민감도평가)

  • Kim, S.M.;Kho, D.W.;You, S.C.;Kim, J.H.
    • Journal of Energy Engineering
    • /
    • v.24 no.2
    • /
    • pp.40-44
    • /
    • 2015
  • Sensitivity on the reactor safety was evaluated for the safety margin and time delay applied to the opening pressure of liquid relief valve(LRV) of the primary heat transport system(PHTS) in the pressurized heavy water reactor(PHWR) type nuclear power plant. Since the LRV is the pressure boundary for the PHTS in the safety analysis, the operating of LRV has a significant effect on the safety analysis results. Therefore it is required during the regulatory review of Wolsong Unit 1 safety analysis to find the safety effect of the application of safety margin and time delay to the LRV opening pressure for the safety analysis of PHTS pressurizing events.

Change Projection of Extreme Indices using RCP Climate Change Scenario (RCP 기후변화시나리오를 이용한 극한지수 변화 전망)

  • Jeung, Se-Jin;Sung, Jang Hyun;Kim, Byung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.11
    • /
    • pp.1089-1101
    • /
    • 2013
  • The study uses a regional climate model to check future changes in extreme climate, to calculate extreme indexes presented by STARDEX, and to analyze the trends to predict the continuity and changes in the spatial distribution of extreme climate in the future. An analysis of extreme climate indices showed that they are likely to increase in the Seoul metropolitan area, in Gyeonggi-do, in Yongdong in Gangwon-do, and in the southern shore region of Korea. It is, however, forecasted to diminish in the central inland region. The analysis also showed that the average temperature in Korea will increase because of climate change. On the other hand, an analysis of extreme rainfall indexes showed that the trend of heavy rainfall threshold is 0.229 in Seogwipo, the greatest five-day rainfall is 5.692 in Seogwipo, and the longest dry period is 0.099 in Sokcho. Of extreme temperature indexes, the trend of Hotdays threshold is 0.777 in Incheon and the longest heat wave is 0.162 in Uljin. The Coldnight threshold is 0.075 in Inje and -0.193 in Tongyeong, according to the analysis.

Analysis on the Generation Characteristics of $^{14}C$ in PHWR and the Adsorption and Desorption Behavior of $^{14}C$ onto ion Exchange Resin (중수로 원전$^{14}C$ 발생 특성 및 이온교환수지에 의한 $^{14}C$$\cdot$착탈 거동 분석)

  • 이상진;양호연;김경덕
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.147-157
    • /
    • 2004
  • The production of $^{14}C$ occurs in the Moderator(MOD), Primary Heat Transport System (PHTS), Annulus Gas System(AGS) and Fuel in the CANDU reactor. Among the four systems, The MOD system is the largest contributor to $^{14}C$ production(approximately 94.8%). $^{14}C$ is distributed of $^{14}CO_2$, $H_2^{14}CO_3$, $H^{14}{CO_3}^-$ and $^{14}{CO_3}^{2-}$ species as a function of the pH of water. Of these species, $H_2^{14}CO_3$ and $H^{14}{CO_3}^-$ form are predominant because the pH of MOD system is > 5. In this paper, adsorption-desorption characteristics of bicarbonate ion (${HCO_3}^-$) by IRN 150 resin was investigated. ${HCO_3}^-$ ion existed in neutral condition(app. pH 7)was reacted with ion exchange resin (IRN-150) and saturated with it. Then $NaNO_3$ and $Na_3PO_4$ solutions selected as extraction materials were used to make an investigation into feasibility of ${HCO_3}^-$ extraction from resin saturated with ${HCO_3}^-$. Desorption of $CO^{2+}$ and $Cs^+$ ion by $Na^+$ ion was not occurred, and desorption of ${HCO_3}^-$ ion by ${NO_3}^-$ and ${PO_4}^{3-}$ was occurred slowly. Also, the status of ion exchange which is used in Wolsong NPPs and generation of spent resin yearly were surveyed.

  • PDF

Biorefinery Based on Weeds and Agricultural Residues (잡초 및 농림부산물을 이용한 Biorefinery 기술개발)

  • Hwang, In-Taek;Hwang, Jin-Soo;Lim, Hee-Kyung;Park, No-Joong
    • Korean Journal of Weed Science
    • /
    • v.30 no.4
    • /
    • pp.340-360
    • /
    • 2010
  • The depletion of fossil fuels, ecological problems associated with $CO_2$ emissions climate change, growing world population, and future energy supplies are forcing the development of alternative resources for energy (heat and electricity), transport fuels and chemicals: the replacement of fossil resources with $CO_2$ neutral biomass. Several options exist to cover energy supplies of the future, including solar, wind, and water power; however, chemical carbon source can get from biomass only. When used in combination with environmental friend production and processing technology, the use of biomass can be seen as a sustainable alternative to conventional chemical feedstocks. The biorefinery concept is analogous to today's petroleum refinery, which produce multiple fuels and chemical products from petroleum. A biorefinery is a facility that integrates biomass conversion processes and equipment to produce fuels, power, and value-added chemicals from biomass. Biorefinery is the co-production of a spectrum of bio-based products (food, feed, materials, and chemicals) and energy (fuels, power, and heat) from biomass [definition IEA Bioenergy Task 42]. By producing multiple products, a biorefinery takes advantage of the various components in biomass and their intermediates therefore maximizing the value derived from the biomass feedstocks. A biorefinery could, for example, produce one or several low-volume, but high-value, chemical or nutraceutical products and a low-value, but high-volume liquid transportation fuel such as biodiesel or bioethanol. Future biorefinery may play a major role in producing chemicals and materials as a bridge between agriculture and chemistry that are traditionally produced from petroleum. Industrial biotechnology is expected to significantly complement or replace the current petroleum-based industry and to play an important role.

Current Status of the Research on the Postharvest Technology of Melon(Cucumis melo L.) (멜론(Cucumis melo L.) 수확 후 관리기술 최근 연구 동향)

  • Oh, Su-Hwan;Bae, Ro-Na;Lee, Seung-Koo
    • Food Science and Preservation
    • /
    • v.18 no.4
    • /
    • pp.442-458
    • /
    • 2011
  • Among Cucubitaceae, melon (Cucumis melo) is one of the most diversified fruits, with various forms, sizes, pulps, and peel colors, In addition, it is a commercially important crop because of its high sweetness, deep flavor, and abundant juice. In the species, there are both climacteric and non-climacteric melons depending on the respiration and ethylene production patterns after harvest. Ethylene is also considered a crucial hormone for determining sex expression, Phytohormones other than ethylene interact and regulate ripening, There are some indices that can be used to evaluate the optimum harvest maturity. The harvest time can be estimated after the pollination time, which is the most commonly used method of determining the harvest maturity of the fruit. Besides the physiological aspects, the biochemical alterations, including those of sweetness, firmness, flavor, color, and rind, contribute to the overall fruit quality. These changes can be categorized based on the ethylene-dependent and ethylene-independent phenomena due to the ethylene-suppressed transgenic melon. After harvest, the fruits are precooled to $10^{\circ}C$ to reduce the field heat, after which they are sized and packed. The fruits can be treated with hot water ($60^{\circ}C$ for 60 min) to prevent the softening of the enzyme activity and microorganisms, and with calcium to maintain their firmness. 1-methylenecyclopropene (1-MCP) treatment also maintains their storability by inhibiting respiration and ethylene production. The shelf life of melon is very short even under cold storage, like other cucurbits, and it is prone to obtaining chilling injury under $10^{\circ}C$. In South Korea, low-temperature ($10^{\circ}C$) storage is known to be the best storage condition for the fruit. For long-time transport, CA storage is a good method of maintaining the quality of the fruit by reducing the respiration and ethylene. For fresh-cut processing, washing with a sanitizing agent and packing with plastic-film processing are needed, and low-temperature storage is necessary. The consumer need and demand for fresh-cut melon are growing, but preserving the quality of fresh-cut melon is more challenging than preserving the quality of the whole fruit.