• Title/Summary/Keyword: Water accounting

Search Result 219, Processing Time 0.035 seconds

Estimation of Water Management Index using Water Accounting (Water accounting에 의한 물관리 지표 산정방안)

  • Ryoo, Kyong-Sik;Hwang, Man-Ha;Jeong, Chang-Sam;Ko, Ick-Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.889-893
    • /
    • 2006
  • 현재 우리나라는 유역전반에 걸쳐 얼마나 많은 유량이 사용되고, 어디에서 사용되며 저류되어 있는지, 생태유지 등을 위해 얼마나 많은 유지 유량이 필요한지, 현재 어느 정도의 유량이 확보되어 있는지 등에 대한 검증된 자료들이 전무한 실정으로 향후 수자원 관리에 있어서 효율적 관리가 매우 어려운 입장이다. 따라서 본 연구에서는 21세기 프론티어 사업의 일환으로 수행중인 '유역 물관리 운영 기술 개발' 과제를 통해 산출된 금강유역의 소유역별 용수이용량 및 유출량 자료 등을 토대로 소유역별 시공간적 물이용 상황을 파악하고 물 관리 지표들을 산정함으로서 효율적인 운영이 가능하도록 하고자 Water accounting을 실시하여 시공간적 Water accounting지수를 산정함으로서 효율적인 운영이 가능하도록 하고자 한다.

  • PDF

Critical Success Factors on PPP Water Project in a Developing Country: Evidence from Indonesia

  • SURACHMAN, Eko Nur;HANDAYANI, Dian;SUHENDRA, Maman;PRABOWO, Sakti
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.10
    • /
    • pp.1071-1080
    • /
    • 2020
  • This study aims to explore the critical success factors of the Water Public-Private Partnership (PPP) Projects in developing country with evidence from Indonesia. We all know that water is a basic need and therefore it becomes very important for the governments especially in the developing countries to develop and formulate a comprehensive water policy to deliver and manage the water services in the most appropriate manner as well tackle several challenges such as budget and project efficiency. In this context, PPP is a promising scheme to address the water problems, hence it becomes important to reveal the success factors of water PPP projects. An Analytic Hierarchy Process (AHP) questionnaire built from delphi methods is used to capture the perception of the relevant stakeholders in relation to the success factors. The results of this study show the most critical success factors in PPP water projects is the support and acceptance of the stakeholders from the community, whereas the private and public entities are the the second and third important factors. These findings contribute to the success of the PPP stakeholders by enhancing the policy-making decision process and by executing the water policies to support the development of PPP in the Water Sector.

Environmental Accounting of the Total Maximum Daily Loads (TMDL) Program in the Nakdong River Basin using the Emergy Analysis (Emergy 분석을 이용한 낙동강유역의 오염총량관리계획에 대한 환경회계)

  • Kim, Jin Lee;Lee, Su-Woong;Kim, Yong-Seok;Lee, Suk-Mo
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.3
    • /
    • pp.349-356
    • /
    • 2011
  • This study, which evaluated the contribution of the real economic value and system in the Nakdong River Basin, estimated the emergy analysis for environmental accounting of the TMDL program. And an environmental accounting for TMDL is evaluated before and after adopting TMDL program respectively. The value of emergy after adopting the TMDL was 7.90 E+20 sej/yr. Although the real yield of the river after governmental investment was high (before: 9.7118 E+20 sej/yr and after: 9.7224 E+20 sej/yr), the effects of improvement was not great, in terms of an investment cost. The benefit/cost ratio resulted from environmental accounting has decreased from 1.493 to 1.230 due to the cost of managing treatment facilities. The method of improving water quality in the Nakdong River Basin by the TMDL program should be changed into an ecological treatment facilities using resources efficiently from a control of water quality depending on expansion of the wastewater treatment facilities and advanced treatment plant using high cost and non-renewable energies.

The Economic Impact Analysis on the Water Industry with Social Accounting Matrix (사회계정행렬을 이용한 수자원분야 정책 효과 분석)

  • Choi, Hanjoo
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.2
    • /
    • pp.95-106
    • /
    • 2014
  • This paper analyses the economic effects of the water industry on the Korean economy by using Social Accounting Matrix (SAM). The SAM is constructed based on the Input-Output table, National account and Family income and expenditure survey for Korea in 2009. Through the SAM multiplier analysis, I estimate the effects of water investment. As the results, this study has found the followings. i) output multiplier effects of water sector are 5.300~7.741, ii) value added multiplier effects of water sector are 0.685~1.158, iii) income multiplier effects of water sector are 0.511~0.984, iv) redistributed income multiplier effects of water sector are -0.096~0.247. The results indicate that a significant influence on the industrial production and the household income in Korea.

Environmental Decision Making of Nakdong River Basin by the Environmental Accounting (환경회계에 의한 낙동강 유역의 환경정책결정에 관한 연구)

  • 김영진;김진이;손지호;이석모
    • Journal of Environmental Science International
    • /
    • v.10 no.2
    • /
    • pp.85-90
    • /
    • 2001
  • The conflicts between environment protection and economic development are becoming increasingly important in environmental decision making of Nakdong River Basin. A science-based evaluation system is now needed to represent both the environmental values and the economic values with a common measure. EMERGY, spelled with an \"m\" evaluates both the work of river and that of human in generating products and services. The monetary cost-benefit analysis and the environmental accounting by EMERGY analysis were applied to determine whether there will have a net benefit in environmental decision making of Nakdong River Basin. Based on the results of the environmental accounting, all alternatives which related to environmental decision making of Nakdong River Basin show that more and more of EMERGY cost becomes needed than the a EMERGY benefit from getting water to drink in the lower basin. From these results, for selecting alternatives to manage water quantity and quality that is sustainable in the environmental use and economic development, environmental accounting concepts must be considered, and the economic structure of Nakdong River Basin should be changed from the present industrial structure to social-economic based on ecological-recycling concept for the sustainable use of Nakdong River.ong River.

  • PDF

Salinity Routing Through Reservoir using WRAP-SALT (WRAP-SALT를 이용한 저수지 염분 추적)

  • Lee, Chi-Hun;Ko, Taek-Jo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.221-221
    • /
    • 2012
  • The WRAP-SALT (Water Rights Analysis Package-SALT) simulation includes computation of end-of-month reservoir storage concentrations and mean monthly reservoir outflow concentrations for each month of the simulation. The model computes reservoir storage loads and concentrations based on load balance accounting algorithms and computes concentrations of water released and withdrawn from a reservoir as a function of the volume-weighted mean concentration of the water stored in the reservoir in the current month or previous months. A load budget accounting of the various component load inflows and outflows entering and leaving a reservoir is performed. A time history of storage concentrations computed for previous months is maintained for use in the lag procedure. This study presents computational methods for routing salinity through reservoirs for incorporation into WRAP-SALT simulation routines and methods for determining values for the parameters of the routing methods.

  • PDF

Estimation of Input Material Accounting Uncertainty With Double-Stage Homogenization in Pyroprocessing

  • Lee, Chaehun;Kim, Bong Young;Won, Byung-Hee;Seo, Hee;Park, Se-Hwan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.1
    • /
    • pp.23-32
    • /
    • 2022
  • Pyroprocessing is a promising technology for managing spent nuclear fuel. The nuclear material accounting of feed material is a challenging issue in safeguarding pyroprocessing facilities. The input material in pyroprocessing is in a solid-state, unlike the solution state in an input accountability tank used in conventional wet-type reprocessing. To reduce the uncertainty of the input material accounting, a double-stage homogenization process is proposed in considering the process throughput, remote controllability, and remote maintenance of an engineering-scale pyroprocessing facility. This study tests two types of mixing equipment in the proposed double-stage homogenization process using surrogate materials. The expected heterogeneity and accounting uncertainty of Pu are calculated based on the surrogate test results. The heterogeneity of Pu was 0.584% obtained from Pressurized Water Reactor (PWR) spent fuel of 59 WGd/tU when the relative standard deviation of the mass ratio, tested from the surrogate powder, is 1%. The uncertainty of the Pu accounting can be lower than 1% when the uncertainty of the spent fuel mass charged into the first mixers is 2%, and the uncertainty of the first sampling mass is 5%.

Accounting for Uncertainty Propagation: Streamflow Forecasting using Multiple Climate and Hydrological Models

  • Kwon, Hyun-Han;Moon, Young-Il;Park, Se-Hoon;Oh, Tae-Suck
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1388-1392
    • /
    • 2008
  • Water resources management depends on dealing inherent uncertainties stemming from climatic and hydrological inputs and models. Dealing with these uncertainties remains a challenge. Streamflow forecasts basically contain uncertainties arising from model structure and initial conditions. Recent enhancements in climate forecasting skill and hydrological modeling provide an breakthrough for delivering improved streamflow forecasts. However, little consideration has been given to methodologies that include coupling both multiple climate and multiple hydrological models, increasing the pool of streamflow forecast ensemble members and accounting for cumulative sources of uncertainty. The approach here proposes integration and coupling of global climate models (GCM), multiple regional climate models, and numerous hydrological models to improve streamflow forecasting and characterize system uncertainty through generation of ensemble forecasts.

  • PDF