• Title/Summary/Keyword: Water absorption ratio

Search Result 620, Processing Time 0.029 seconds

Density and Water Absorption Ratio Property of the Magnesium Oxide Matrix According to Wood flour Addition Ratio (목분의 첨가량에 따른 산화마그네슘 경화체의 밀도 및 흡수율 특성)

  • Jung, Byeong-Yeol;Kim, Heon-Tae;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.236-237
    • /
    • 2014
  • Recently, it changes to the frame construction in the wall type structure for the life span improvement of the apartment house of our country. The execution of the light panel increased while the execution of the frame construction increased. Therefore, the density and absorption ratio of the magnesium oxide matrix according to the wood flour amount of addition ratio property try to be analyze for the lightweight of the surface material of the light panel. The test result, the density has been declined as the addition ratio increase of the wood flour. In the case of the water absorption ratio, water absorption ratio has been increased as addition ratio increase of wood flour. However, wood flour addition ratio 15% determined the most appropriate when considering the density and water absorption ratio.

  • PDF

Compressive Strength and Absorption Ratio of Mortar Replaced with Coated Spent Coffee Grounds by Type of Water Repellent (발수제 종류에 따른 코팅된 커피찌꺼기를 치환한 모르타르의 압축강도 및 흡수율)

  • Choi, Byung-Cheol;Kim, Gyu-Yong;Pyeon, Su-Jeong;Ji, Sung-Jun;Lee, Yae-Chan;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.63-64
    • /
    • 2023
  • In order to reduce the high absorption ratio of spent coffee grounds, this study examined the compressive strength and absorption ratio of mortar replacing coated spent coffee grounds according to the type of water repellent. In order to examine this, as the water repellent used, a silane-based water repellent (fluorine-based water repellent) and an acrylic-based water repellent, which are film-type water repellents, and a silane/siloxane-based water repellent, which are penetration-type water repellents, were used. The spent coffee grounds were coated with each of three water repellents, and mortar was prepared by mixing cement and fine aggregate. As a result of the experiment, the compressive strength and absorption ratio of the mortar replaced with coated spent coffee grounds coated with the film-type water repellent were superior to the penetration-type water repellent. Therefore, in order to reduce the high absorption ratio of spent coffee grounds, a suitable water repellent is a film-type water repellent. Among them, it is judged that the acrylic type has excellent water repellency and is suitable.

  • PDF

Analysis of Operation Parameters of Pilot-Scale Packed-Absorption System for Airborne Methyl Ethyl Ketone Control (공기 중 메틸에틸케톤 제어를 위한 Pilot-Scale 흡수 시스템의 운영인자 분석)

  • Jo, Wan-Kuen;Kim, Wang-Tae
    • Journal of Environmental Science International
    • /
    • v.20 no.4
    • /
    • pp.501-509
    • /
    • 2011
  • Unlike many laboratory-scale studies on absorption of organic compounds (VOCs), limited pilot-scale studies have been reported. Accordingly, the present study was carried out to examine operation parameters for the effective control of a hydrophilic VOC (methyl ethyl ketone, MEK) by applying a circular pilot-scale packed-absorption system (inside diameter 37 cm ${\times}$ height 167 cm). The absorption efficiencies of MEK were investigated for three major operation parameters: input concentration, water flow rate, and ratio of gas flow-rate to washing water amount (water-to-gas ratio). The experimental set-up comprised of the flow control system, generation system, recirculation system, packed-absorption system, and outlet system. For three MEK input concentrations (300, 350, and 750 ppm), absorption efficiencies approached near 95% and then, decreased gradually as the operation time increased, thereby suggesting a non-steady state condition. Under these conditions, higher absorption efficiencies were shown for lower input concentration conditions, which were consistent with those of laboratory-scale studies. However, a steady state condition occurred for two input concentration conditions (100 and 200 ppm), and the difference in absorption efficiencies between these two conditions were insignificant. As supported by an established gas-liquid absorption theory, a higher water flow rate exhibited a greater absorption efficiency. Moreover, as same with the laboratory-scale studies, the absorption efficiencies increased as water-to-gas ratios increased. Meanwhile, regardless of water flow rates or water-to-gas ratios, as the operation time of the absorption became longer, the pH of water increased, but the elevation extent was not substantial (maximum pH difference, 1.1).

Influence of Aggregate Factor on the Estimation of Water Content in Fresh Concrete (굳지않은 콘크리트의 단위수량 추정에 미치는 골재요인의 영향)

  • 김영득;황인성;전충근;한천구;김광서
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.223-226
    • /
    • 2002
  • This study is performed to investigate the influence of aggregate factor on the estimation of water content in fresh concrete. According to the results, water content is estimated higher in the case of basalt and granite aggregate than in the case of limestone because absorption water ratio of basalt and granite is large. As the replacement ratio of recycled aggregate increases, water content is estimated higher. But, after correcting absorption water ratio of aggregate, estimated water content is similar to mixture water content. Therefore, it is important to know the absorption water ratio of aggregates accurately, to estimate water content.

  • PDF

Monitoring the water absorption in GFRE pipes via an electrical capacitance sensors

  • Altabey, Wael A.;Noori, Mohammad
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.4
    • /
    • pp.499-513
    • /
    • 2018
  • One of the major problems in glass fiber reinforced epoxy (GFRE) composite pipes is the durability under water absorption. This condition is generally recognized to cause degradations in strength and mechanical properties. Therefore, there is a need for an intelligent system for detecting the absorption rate and computing the mass of water absorption (M%) as a function of absorption time (t). The present work represents a new non-destructive evaluation (NDE) technique for detecting the water absorption rate by evaluating the dielectric properties of glass fiber and epoxy resin composite pipes subjected to internal hydrostatic pressure at room temperature. The variation in the dielectric signatures is employed to design an electrical capacitance sensor (ECS) with high sensitivity to detect such defects. ECS consists of twelve electrodes mounted on the outer surface of the pipe. Radius-electrode ratio is defined as the ratio of inner and outer radius of pipe. A finite element (FE) simulation model is developed to measure the capacitance values and node potential distribution of ECS electrodes on the basis of water absorption rate in the pipe material as a function of absorption time. The arrangements for positioning12-electrode sensor parameters such as capacitance, capacitance change and change rate of capacitance are analyzed by ANSYS and MATLAB to plot the mass of water absorption curve against absorption time (t). An analytical model based on a Fickian diffusion model is conducted to predict the saturation level of water absorption ($M_S$) from the obtained mass of water absorption curve. The FE results are in excellent agreement with the analytical results and experimental results available in the literature, thus, validating the accuracy and reliability of the proposed expert system.

Properties of Mortar Admixed with Waterproofer Recycled Cement-Sludge (시멘트슬러지를 재활용한 시멘트 혼합용 방수제의 모르타르 방수특성)

  • 노재성;조헌영;이기준;이재환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.37-43
    • /
    • 1992
  • Properties of the mortar and the remitar admixed with waterproofer(CS) which was made from cement-sludge were compared with those of the other waterproofers (DA, DD and DH). 1. The CS waterproofer appeared to have a good waterproofness(compressive strength-79%, water absorption ratio-60%, waterpermeability ratio-70%)in cement mortar. 2. The CS waterproofer appeared to have an excellent watertightness(compressive strength-125% water absorption ratio-45%, water permeability ratio-60%) in remitar.

  • PDF

Effects of Silica Fume Content and Polymer-Binder Ratio on Properties of Ultrarapid-Hardening Polymer-Modified Mortars

  • Choi, Jong Yun;Joo, Myung-Ki;Lho, Byeong Cheol
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.2
    • /
    • pp.249-256
    • /
    • 2016
  • This paper deals with the effects of silica fume content and polymer-binder ratio on the properties of ultrarapid-hardening polymer-modified mortar using silica fume and ethylene-vinyl acetate redispersible polymer powder instead of styrene-butadiene rubber latex to shorten the hardening time. The ultrarapid-hardening polymer-modified mortar was prepared with various silica fume contents and polymer-binder ratios, and tested flexural strength, compressive strength, water absorption, carbonation depth and chloride ion penetration depth. As results, the flexural, compressive and adhesion strengths of the ultrarapid-hardening polymer-modified mortar tended to increase as increasing polymer-binder ratio, and reached the maximums at 4 % of silica fume content. The water absorption, carbonation and chloride ion penetration resistance were improved according to silica fume content and polymer-binder ratio.

Analysis of Thermodynamic Design Data for Cooling of Double -Effect Absorption System of Solar Energy using LiBr - water and Ethylene Glycol Mixture (흡수액으로 에틸렌글리콜이 혼합되고 태양열을 이용한 이중효용 흡수식 시스템의 냉방 특성해석)

  • Won, Seung-Ho;Park, Sang-Il
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.4
    • /
    • pp.45-54
    • /
    • 2003
  • For cooling of double effect absorption heat pump system of solar heating source, analysis of thermodynamic design data has been done to find the property of Libr-water + ethylene Glycol mixture for working fluid by computer simulation. Derived thermodynamic design data, enthalpy based coefficient of performance and flow ratio for possible combinations of operating temperature for water - LiBr and Ethylene Glycol mixture ($H_2O$ : CHO ratio 10:1 by mole) by computer simulation are done. The obtained results, COP and mass flow ratio of the water - lithium bromide - ethylene glycol system, are compared with data for the water-Libr pair solution.

Analysis of Thermodynamic Design Data for Heating of Double - Effect Solar Absorption System using LiBr - water and Ethylene Glycol Mixture (에틸렌글리콜 혼합액을 사용하고, 태양열을 보조열원으로 하는 이중효용 흡수식 시스템의 난방 특성해석)

  • Won, S.H.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.4
    • /
    • pp.51-61
    • /
    • 2002
  • Analysis of thermodynamic design data of double effect solar absorption heat pump system for heating has been done to find the property of Libr-water + ethylene Glycol mixture for working fluid by computer simulation. Derived thermodynamic design data. enthalpy based coefficient of performance and flow ratio for possible combinations of operating temperature for water - LiBr and Ethylene Glycol mixture (H2O: CHO ratio 10:1 by mole) by computer simulation. The obtained results, COP and mass flow ratio of the water-lithium bromide-ethylene glycol system, are compared with data for the water-Libr pair solution.

Dynamic Analysis of an Ammonia-Water Absorption Chiller (암모니아-물 흡수식 냉각기의 동적 해석)

  • Kim Byong Joo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.10
    • /
    • pp.990-998
    • /
    • 2004
  • Dynamic behavior of an ammonia-water absorption system was investigated numerically. Thermal-hydraulic model for a single-effect 3 RT chiller was developed by applying transient conservation equations of total mass, $NH_3$ mass, energy and momentum to each component. Transient variations of system properties and transport variables were analysed during start-up operation. Numerical analyses were performed to quantify the effects of bulk concentration and charging ratio on the system performance in terms of cooling capacity, coefficient of performance, and time constant of system. For an absorption chiller considered in the present study, optimum charging ratio and bulk concentration were to found to exist, which resulted in the maximum cooling capacity and COP. The time constant increased as the charging ratio increased, but decreased with the increase of bulk concentration.