• 제목/요약/키워드: Water Tunnel

검색결과 852건 처리시간 0.023초

터널 유지관리계측의 압력 관리기준치 설정에 관한 연구 (A study on the establishment of pressure limit values of management monitoring in tunnel)

  • 우종태
    • 한국터널지하공간학회 논문집
    • /
    • 제18권1호
    • /
    • pp.53-60
    • /
    • 2016
  • 본 논문은 터널 유지관리계측의 압력 관리기준치 설정에 대한 연구로 계측 초기에 설정된 지하철계측 초기 관리기준치를 토대로 서울지하철 6,7,9호선 8개 대표단면의 터널 콘크리트라이닝의 토압과 간극수압에 대하여 약 5년에 걸친 계측 실적을 분석하고, 국외 계측관리기준을 비교하여 향후 터널 유지관리계측에 적용할 압력 계측관리기준치 설정에 대한 연구를 수행하였다. 연구결과 향후에 터널에 적용할 유지관리계측의 압력 관리기준치는 국내적용 계측관리기준치와 국외적용 계측관리기준치 분석결과를 비교하여 안전단계는 허용압력의 60%, 주의단계는 허용압력의 80%, 정밀분석단계는 허용압력의 100%로 실무에서 쉽게 적용할 수 있는 절대치에 의한 계측관리방법을 제안하였다.

수리실험을 이용한 지하유입시설 유입구 형상에 따른 수리학적 특성 분석 (Study of Hydraulic Characteristics with the Shape of the Intake of an Underground Inflow Facility using Hydraulic Experiments)

  • 성호제;박인환;이동섭
    • 한국안전학회지
    • /
    • 제33권4호
    • /
    • pp.119-126
    • /
    • 2018
  • In recent years, as flood damage caused by heavy rains increased, the great-depth tunnel using urban underground space is emerging as a countermeasure of urban inundation. The great-depth tunnel is used to reduce urban inundation by using the underground space. The drainage efficiency of great-depth tunnel depends on the intake design, which leads to increase discharge into the underground space. The spiral intake and the tangential intake are commonly used for the inlet facility. The spiral intake creates a vortex flow along the drop shaft and reduces an energy of the flow by the wall friction. In the tangential intake, flow simply falls down into the drop shaft, and the design is simple to construct compared to the spiral intake. In the case of the spiral intake, the water level at the drop shaft entrance is risen due to the chocking induced by the flowrate increase. The drainage efficiency of the tangential intake decreases because the flow is not sufficiently accelerated under low flow conditions. Therefore, to compensate disadvantages of the previously suggested intake design, the multi-stage intake was developed which can stably withdraw water even under a low flow rate below the design flow rate. The hydraulic characteristics in the multi-stage intake were analyzed by changing the flow rate to compare the drainage performance according to the intake design. From the measurements, the drainage efficiency was improved in both the low and high flow rate conditions when the multi-stage inlet was employed.

집중호우로 인한 OO터널 사갱 붕괴 원인 분석 및 대책에 관한 연구 (A Study of Analysis and Countermeasure of the Collapsed inclined shaft by a Heavy Rain)

  • 윤태국;이유석;오혁희;김동수;이송
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.241-248
    • /
    • 2003
  • In August 2002, side wall of OO tunnel, at the Bonghwa, Kungbuk province, Korea, was collapsed by abruptly applied heavy soil and water pressure to side wall from a inclined shaft when there was a heavy rain. These days, Inclined shaft is used for the purpose of reducing construction time, using ventilation system, using the out of carrying equipment and mucking when we construct tunnel in the world. Recently constructed tunnel has the source of inclined shafts, but the more time elapse, we lose the source of the inclined shaft such as exact position, condition, and the fact that whether inclined shaft is exist or not. Therefore, this study inspected the interior's appearance, analyzed structure to evaluate the reason of collapsing side wall and this study also performed the repairing work. Finally, we show improving maintenance method to prevent that similar accident that might be happened.

  • PDF

부유식 태양광-파력 복합발전 개념 및 원자력발전소 비상전원을 위한 응용 (A Buoyant Combined Solar-Wave Power Generation and Its Application for Emergency Power Supply of Nuclear Power Plant)

  • 차경호;김정택
    • 신재생에너지
    • /
    • 제7권4호
    • /
    • pp.37-41
    • /
    • 2011
  • This paper presents a Combined solar-wave Power Generation (CPG) concept that the CPG unit is maintained as buoyant at the level of sea water and it is also supported by a submerged tunnel, with the aim of supplying emergency electric power during the station blackout events of nuclear power plants. The CPG concept has been motivated from the 2011 Fukushima-Daiichi Accidents due to the loss of both offsite AC power and emergency diesel power caused by natural hazards such as earthquake and tsunami. The CPG is conceptualized by applying different types and different sites for emergency power generation, in order to reduce common cause failures of emergency power suppliers due to natural hazards. Thus, the CPG can provide a new mean for supplying emergency electric power during station blackout events of nuclear power plants. For this application, the CPG requirements are described with a typical configuration at the ocean side of a submerged tunnel.

한중.한일 해저터널 발파굴착의 난제해결과 CM.VM 적용에 대한 고찰 (Consideration for Solution of a Difficult Problem and Application of CM.VM in Blasting Excavation for Korea-China and Korea-Japan Sea Bottom Tunnel)

  • 신창용;안명석;박호경
    • 화약ㆍ발파
    • /
    • 제28권1호
    • /
    • pp.71-75
    • /
    • 2010
  • 한일해저터널 구상에 이어 한중해저터널에 관한 토론이 공개적으로 시작되었다. 이에 우리 기술진의 현재의 역량과 정치적 경제적 협조방안을 열거하였으며 특히 해저터널 건설시의 기술적 문제점과 해결과제를 조사 연구하였고 이에 따른 방안을 제시하였다. 굴착기술 측면에서는 깊은해저에서의 단층대 등 암반상태를 감안한 발파 방수처리기술 등을 고려 해야겠다. 완공 후 터널내 화재와 누수관리 등에 더욱 유의하여 설계 시공하고 고급 건설사업관리제도(CMP)와 가치공학 및 창조경영공학(CVS)등을 적용해야 할 것으로 생각된다.

지하 관 시설물과 인접한 소규모 단면 터널의 발파굴착 사례 (Blast Excavation of Small Diameter Tunnel near Underground pipe lines)

  • 원연호;김강규
    • 화약ㆍ발파
    • /
    • 제28권1호
    • /
    • pp.40-54
    • /
    • 2010
  • 메사쉴드공법은 주로 풍화토 또는 풍화암 구간의 소규모 굴착단면에 적용되며 대부분 인력굴착으로 이루어지나 막장면에 암반이 노출되면 유압력을 이용한 할암공법이나 발파공법의 적용이 불가피하다. 본 연구에서는 메사쉴드공법이 적용된 소규모 굴착단면 터널에서 터널상부에 상수도관 및 가스관 등이 근접되고, 강도가 높은 암반 노출로 인해 할암공법 대신에 125g의 최소장약량으로 심발공에서 초기진동을 제어하는 발파공법을 소규모 굴착단면 터널에 적용한 사례이다.

서울시 지하철구간내 지하수위강하에 따른 지하공간 환경오염 감시의 필요성 및 대책

  • 이기철;김윤영;이주영
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 총회 및 춘계학술발표회
    • /
    • pp.167-172
    • /
    • 2002
  • Seoul subway system has been constructed to solve traffic difficulties of Seoul metropolitan, and now is the major public transportation. However, the more line has added in the system the deeper the bottom of the tunnel base. And a huge amount of groundwater along the line has seeping into the tunnel. Several subway stations has pumping system to extract the groundwater to the outside and consequently, groundwater table along the line has declined gradually. Groundwater table has dropped about 40 meters at some areas, There was some study for the proper usage of the abstracted groundwater and the project to use the groundwater has launched already by the local government. However. more serious problem is expected on quality degradation of soil and groundwater as the decline of groundwater table along the subway line. This study suggests that the detailed groundwater environmental study should be made as soon as possible for this. If there is any pollution leaking at the surface area of the groundwater depression, the pollution will be seep into the subway tunnel in some day even though the time will be different with the soil material and hydraulic characteristics of the aquifer. And the polluted area of the soil and groundwater would be enlarged along the pathway The study on possibility of the soil subsidence and reducing surface water flow in small creek were also needed. This study suggest one of the counter measurement that restoring the declined groundwater table after groundwater environmental study

  • PDF

Intradermal Therapy (Mesotherapy) for the Treatment of Acute Pain in Carpal Tunnel Syndrome: A Preliminary Study

  • Conforti, Giorgio;Capone, Loredana;Corra, Stefano
    • The Korean Journal of Pain
    • /
    • 제27권1호
    • /
    • pp.49-53
    • /
    • 2014
  • Background: The carpal tunnel syndrome (CTS) is the most common cause of severe hand pain. In this study we treated acute pain in CTS patients by means of local intradermal injections of anti-inflammatory drugs (mesotherapy). Methods: In twenty-five patients (forty-five hands), CTS diagnosis was confirmed by clinical and neurophysiological examination prior to mesotherapy. A mixture containing lidocaine 10 mg, ketoprophen lysine-acetylsalycilate 80 mg, xantinol nicotinate 100 mg, cyanocobalamine 1,000 mcg plus injectable water was used. Sites of injection were three parallel lines above the transverse carpal ligament and two v-shaped lines, one at the base of the thenar eminence, and the other at the base of the hypothenar eminence. Results: The day after the treatment, all but four patients reported a significant reduction in pain and paresthesias. After 12 months, 17 patients had a complete pain relief, eight patients reported recurrence of pain and sensory symptoms and four out of them underwent surgical treatment. Conclusions: With the obvious limits of a small-size open-label study, our results suggest that mesotherapy can temporary relieve pain and paresthesias in most CTS patients and in some cases its effect seems to be long-lasting. Further controlled studies are needed to confirm our preliminary findings and to compare mesotherapy to conventional approaches for the treatment of CTS.

Assessment of London underground tube tunnels - investigation, monitoring and analysis

  • Wright, Peter
    • Smart Structures and Systems
    • /
    • 제6권3호
    • /
    • pp.239-262
    • /
    • 2010
  • Tube Lines has carried out a "knowledge and investigation programme" on the deep tube tunnels comprising the Jubilee, Northern and Piccadilly lines, as required by the PPP contract with London Underground. Many of the tunnels have been in use for over 100 years, so this assessment was considered essential to the future safe functioning of the system. This programme has involved a number of generic investigations which guide the assessment methodology and the analysis of some 5,000 individual structures. A significant amount of investigation has been carried out, including ultrasonic thickness measurement, detection of brickwork laminations using radar, stress measurement using magnetic techniques, determination of soil parameters using CPT, pressuremeter and laboratory testing, installation of piezometers, material and tunnel segment testing, and trialling of remote photographic techniques for inspection of large tunnels and shafts. Vibrating wire, potentiometer, electro level, optical and fibre-optic monitoring has been used, and laser measurement and laser scanning has been employed to measure tunnel circularity. It is considered that there is scope for considerable improvements in non-destructive testing technology for structural assessment in particular, and some ideas are offered as a "wish-list". Assessment reports have now been produced for all assets forming Tube Lines' deep tube tunnel network. For assets which are non-compliant with London Underground standards, the risk to the operating railway has to be maintained as low as reasonably practicable (ALARP) using enhanced inspection and monitoring, or repair where required. Monitoring techniques have developed greatly during recent years and further advances will continue to support the economic whole life asset management of infrastructure networks.

소형 풍동을 이용한 토양의 풍식 가능 입경 분석 (Experimental Investigation on Particle Size of Soils Erodible by Wind using Portable Wind Erosion Tunnel)

  • 김태완;손영환;민슬기;이인복;홍세운;김민영
    • 한국농공학회논문집
    • /
    • 제55권6호
    • /
    • pp.127-133
    • /
    • 2013
  • The purpose of this study was to investigate maximum and minimum grain size which eroded by wind according to soil and wind conditions, such as top soil water content, roughness, land slope, wind velocity and proportion of grain size under 0.84mm. For performing this study, portable wind erosion tunnel was designed and utilized during field test, which facilitated measuring actual wind erosions under artificially controlled wind conditions. In the result, maximum, minimum grain size had strong negative correlation with roughness while weak positive correlation with wind velocity. Also, Slope which means the effect of gravity also influence grain size erodible by winds. Based on these results, regression equations were suggested for predicting maximum and minimum grain sizes by using multiple linear regression analysis from SPSS 20.0. The equation for maximum grain size erodible by winds showed a good agreement with the observed data with $R^2$=0.896. Other equation for minimum grain size had $R^2$=0.777.