• Title/Summary/Keyword: Water System Dynamics

Search Result 397, Processing Time 0.027 seconds

Fish-trait Simulator for Constructing Virtual Aquarium System (가상수족관 시스템 구축을 위한 어류 생태 시뮬레이터)

  • Jeong, Seung-Moon;Lee, Hyeon-Cheol;Kim, Eun-Seok;Hur, Gi-Taek;Gang, Gyeong-Heon
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.3
    • /
    • pp.68-78
    • /
    • 2007
  • In a virtual aquarium, the behavior of fish objects is the most important factor in respect of visual effects. In addition to the individual behavior of fish object, the interactions between objects due to their attributes, can improve the dynamics and reality of the virtual world. In this paper, we analyze the principal habits of fish objects such as the vitality, the range of movement, the maximum depth of water they can live, and the cycle of eating. Then, we suggest a method for simulating the stable marine ecosystem with controlling the behaviors, the interaction with other species, the average span of life, and all that sort of thing based on the result of analysis. Because we can freely modify the behavior of fish object by altering the values of attributes, it can be utilized in the dynamic virtual aquarium, the 3D aquarium screen saver, and the virtual fish game, and so on.

Performance Analysis of a $CO_2$ Two-Stage Twin Rotary Compressor ($CO_2$ 2단 트윈 로타리 압축기 성능해석)

  • Kim, Woo-Young;Ahn, Jong-Min;Kim, Hyun-Jin;Cho, Sung-Oug
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.1
    • /
    • pp.19-27
    • /
    • 2007
  • Analytical investigation on the performance of a two stage twin rotary compressor for $CO_2$ heat pump water heater system has been carried out. A computer simulation program was made based on analytical models for gas compression in control volumes, leakages among neighboring volumes, and dynamics of moving elements of the compressor. Calculated cooling capacity, compressor input, and COP were well compared to those of experiments over the compressor speeds tested. For the operating condition of suction pressure of 3 MPa, and discharge pressure of 9 MPa, and compressor inlet temperature of $35^{\circ}C$, the compressor efficiency was calculated to be 80.2%: volumetric, adiabatic, and mechanical efficiencies were 88.3%, 93.2%, and 92.7%, respectively. For the present compressor model, volumetric and adiabatic efficiencies of the second stage cylinder were lower by about $6{\sim}7%$ than those of the first stage mainly due to the smaller discharge port at the second stage. Parametric study on the discharge port size showed that the compressor performance could be improved by 3.5% just by increasing the discharge port diameter by 20%.

Numerical Analysis for Evaluation of Ejection Capacity Relationship of Safety Valves in Pressure Regulating Station (II) - Flow Analysis and Required Effective Discharge Area of Safety Valve - (정압기지내의 안전밸브 분출용량 관계식 검증을 위한 유동해석 (II) - 안전밸브 유동 해석 및 필요분출면적 -)

  • Gwon, Hyuk-Rok;Roh, Kyung-Chul;Kim, Young-Seop;Lee, Seong-Hyuk
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.105-109
    • /
    • 2008
  • A safety valve has a valve mechanism for the automatic release of gas from piping system when the pressure exceeds preset limit cause of a defect of a pressure regulator, condensation of water in a pipe. Therefore, for the safety of pressure regulating station, it is essential to study the flow regime and characteristics of safety valve. This article presents the numerical analysis on the flow analysis, the ejection capacity and required effective discharge area of the safety valve that is established in pressure regulating station. Then, the results are compared and analyzed with domestic and foreign regulations such as API(America Petroleum Institute), EN(European Standard), and NF(Norme Francise). Moreover, the installation number of safety valve is considered by using domestic and foreign regulations and maximum reguired effective discharge area of safety valve.

  • PDF

Numerical Analysis on Turning and Yaw Checking Abilities of KCS in Calm Water a Based on Free-Running Simulations (가상 자유 항주를 이용한 KCS 선형의 정수 중 선회 및 변침 성능 해석)

  • Yang, Kyung-Kyu;Kim, Yoo-Chul;Kim, Kwang-Soo;Yeon, Seong Mo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • To understand physical phenomena of ship maneuvering deeply, a numerical study based on computational fluid dynamics is required. A computational method that can simulate the interaction between the ship hull, propeller, and rudder will provide informative local flows during ship maneuvering tests. The analysis of local flows can be applied to improve a physical model of ship maneuvering that has been widely used in maneuvering simulations. In this study, the numerical program named as WAVIS that has been developed for ship resistance and propulsion problems is extended to simulate ship maneuvering by free-running tests. The six degree-of-freedom of ship motion is implemented based on Euler angles and the overset technique is applied to treat the moving grid of ship hull and rudder. The propulsion force due to a propeller is calculated by a panel method that is based on the lifting-surface theory. The newly extended code is applied to simulate turning and zig-zag tests of KCS and the comparison with the available experimental data has been made.

Shipboard Verification Test of Onboard Carbon Dioxide Capture System (OCCS) Using Sodium Hydroxide(NaOH) Solution (가성소다(NaOH) 용액을 이용한 선상 이산화탄소 포집 장치의 선박 검증시험)

  • Gwang Hyun Lee;Hyung Ju Roh;Min woo Lee;Won Kyeong Son;Jae Yeoul Jeong;Tae-Hong Kim;Byung-Tak NAM;Jae-Ik Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.1
    • /
    • pp.51-60
    • /
    • 2024
  • Hi Air Korea and Hanwha ocean are currently developing an Onboard Carbon dioxide Capture System (OCCS) to absorb CO2 emitted from ship's engine using a sodium hydroxide(NaOH) solution, and converting the resulting salt into a solid form through a chemical reaction with calcium oxide (CaO). The system process involves the following steps; 1)The reaction of CO2 gas absorption in water, 2)The reaction between carbonic acid (H2CO3) and NaOH solution to produce carbonate or bicarbonate, and 3)The reaction between carbonate or bicarbonate and CaO to form calcium carbonate (CaCO3). And ultimately, the solid material, CaCO3, is separated and discharged using a separator. The OCCS has been installed on an ship and the test results have confirmed significant reduction effects of CO2 in the ship's exhaust gas. A portion of the exhaust gas emitted from the engine was transferred to the OCCS using a blower. The flow rate of the transferred gas ranged from 800 to 1384 m3/hr, and the CO2 concentration in the exhaust gas was 5.1 vol% for VLSFO, 3.7 vol% for LNG and a 12 wt% NaOH solution was used. The results showed a CO2 capture efficiency of approximately 42.5 to 64.1 vol% and the CO2 capture rate approximately 48.4 to 52.2kg/hr. Additionally, to assess the impact of the discharged CaCO3on the marine ecosystem, we conducted "marine ecotoxicity test" and performed Computational Fluid Dynamics (CFD) analysis to evaluate the dispersion and dilution of the discharged effluent.

Relationship between a Dense Bloom of Cyanobacterium Anabaena spp. and Rainfalls in the North Han River System of South Korea (북한강 수계의 남조 Anabaena 대발생과 강우의 관계)

  • Byun, Jeong-Hwan;Cho, In-Hwan;Hwang, Soon-Jin;Park, Myung-Hwan;Byeon, Myeong-Seop;Kim, Baik-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.2
    • /
    • pp.116-126
    • /
    • 2014
  • To evaluate the relationship between dynamics of Cyanobacterial bloom and rainfalls, a monthly monitoring of water quality and phytoplankton from the three serial lakes (Lake Ui-am, Lake Chung-pyeong and Lake Pal-dang) in the North Han River System were examined 12 times from May 2012 to March 2013. A dense bloom of cyanobacterium Anabaena spp., was occurred over three lakes in the summer season of 2012. In Lake Ui-am, the Anabaena population appeared in June, showed a peak in July (43,850 cells $mL^{-1}$) and disappeared in November 2012. In Lake Chung-pyeong and Lake Pal-dang, Anabaena population commonly appeared in July, showed the peaks (31,648 cells $mL^{-1}$ and 7,136 cells $mL^{-1}$, respectively) in August, and entirely disappeared in September 2012. Over the three lakes, the phytoplankton community was commonly dominated by diatoms before Monsoon, cyanobacteria during Monsoon, and diatoms after Monsoon, respectively, indicating a Monsoon-dependent succession. A correlation analysis revealed that dynamics of Anabaena population was strongly related with rainfall (r=0.72, r=0.83, r=0.88, P<0.01 for three lakes), and partly with nutrients, inflow and outflow of lakes. Therefore, this study indicates that the outbreak and destruction of Anabaena bloom in North Han River System between 2012 and 2013 was impacted by rainfalls. However, a high density of cyanobacteria in Lake Ui-am remained after Monsoon, and thus, may paroduce bad-order and toxins from phytoplankton.

Construction of a Simple Bi-trophic Microcosm System Using Standard Test Species (Pseudokirchneriella subcapitata and Daphnia magna) for Testing Chemical Toxicities (화학물질에 대한 독성시험 bi-trophic microcosm 구축에 있어 표준시험생물 녹조류 (Pseudokirchneriella subcapitata)와 물벼룩 (Daphnia magna)의 개체군 특성 연구)

  • Sakamoto, Masaki;Mano, Hiroyuki;Hanazato, Takayuki;Chang, Kwang-Hyeon
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.3
    • /
    • pp.228-235
    • /
    • 2016
  • Aquatic ecosystems are receiving various harmful effects due to anthropogenic chemical pollutions. To protect wildlife, risk assessments of the chemicals are conducted using reference indexes of toxicity estimated by species-level laboratory tests and/or micro-/mesocosm community-level studies. However, the existing micro-/mesocosm communities are structurally too complicated, and it is also difficult to compare the experimental results directly with those from species-level tests. Here, we developed a procedure of a simple bi-trophic microcosm experiment which contains the common species (a green algae, Pseudokirchneriella subcapitata and a cladoceran, Daphnia magna) for testing chemical toxicities. For the proper operation of bitrophic microcosm experiment, the minimum required concentration of primary producer (P. subcapitata) is $5{\times}10^5cells\;mL^{-1}$. The microcosm system showed higher stability when the initially introduced D. magna population was composed of neonates (<24-h old) than adults and those mixture. This simple microcosm system would be an applicable tool to estimate the disturbing impacts of pollutants on plant-herbivore interactions, and linking the species- and population-/community level risk assessments in the future studies.

Phytoplankton and Environmental Factors in the Southeastern Barents Sea during August 2003 (북극해 하계 남동 바렌츠 해역에서 식물플랑크톤 크기별 분포와 환경요인에 관한 연구)

  • Joo, Hyoung-Min;Lee, Jin-Hwan;Chung, Kyung-Ho;Kang, Jae-Shin;Kang, Sung-Ho
    • Ocean and Polar Research
    • /
    • v.27 no.3
    • /
    • pp.265-276
    • /
    • 2005
  • In order to grasp the structure and dynamics of phytoplankton communities, chlorophyll-a (Chl-a) and cell abundance were measured at 20 stations during the period from August 9 to August 21, 2003 in the southeastern Barents Sea on surface and subsurface chlorophyll maximum depth (SCM). Surface temperatures were varied from minimum $-0.7^{\circ}C(st. 18)$ to maximum $10.4^{\circ}C(st.1)$. Salinities were varied from minimum 29.9 psu(st. 18) to maximum 35.8 psu(st.2). The maximum nutrient(phosphate, nitrate, silicate) concentrations were $0.12{\mu}M,\;0.11{\mu}M,\;7.53{\mu}M$ and minimum concentrations were $0.01{\mu}M,\;0.03{\mu}M,\;1.43{\mu}M$, respectively. On SCM physical environmental factor were almost similar. Chl-a concentrations ranged from 0.23 to $2.13{\mu}g\;chi-a\;l^{-1}$ at SCM. Nano- and pico phytoplankton were the important contributors for increase of the Chl-a. It was about seven times difference between highest concentration to lowest. Phytoplankton communities were composed of diatoms, dinoflagellates, cryptophyceae, silicoflagellate, and prymnesiophyceae showing 37 taxa at surface and 38 taxa at SCM. Picophytoplankton was the most dominant in all stations and all layers, but the second groups were 2 and/or 3 taxa. Phytoplankton abundance ranged from minimum $4.3{\times}10^5\;cells\;l^{-1}$ (st. 20) to maximum $2.4{\times}10^6\;cells\;l^{\-1}$. (st. 17) at surface water. As a result, phytoplankton might be controlled by physical factors such as North Atlantic ocean currents and northern melt water among environmental factors in Barents Set h addition the dominant species were nano- and pico phytoplankton such as Phaeocystis, Cryptomonas and Dinobryon in the study area.

Relationship between a Dense Population of Cyanobacteria and Odorous Compounds in the North Han River System in 2014 and 2015 (북한강 수계에 출현한 남조류와 이취미의 상관관계)

  • Byun, Jeong-Hwan;Hwang, Soon-Jin;Kim, Baik-Ho;Park, Jin-Rak;Lee, Jae-Kwan;Lim, Byung-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.4
    • /
    • pp.263-271
    • /
    • 2015
  • To evaluate the relationship between dynamics of cyanobacteria and odorous compounds, a monthly monitoring of water quality and phytoplankton were conducted at the three serial lakes (Lake Ui-am, Lake Cheong-pyeong and Lake Pal-dang) in the North Han River for 11 times from May 2014 to March 2015. In the three serial lakes, phytoplankton communities showed that seasonal changes in Bacillariophyceae-Cyanophyceae-Bacillariophyceae. Anabaena and Pseudanabaena were dominant species in August and September 2014. At the same time the odors (Geosmin, 2-MIB) were also detected with high concentration. Relationship between environmental factors and cyanobacterial abundance showed a significant correlation with Anabaena circinalis and geosmin (r=0.983, p<0.01). In the case of Pseudanabaena limnetica showed a significant correlation of total nitrogen (r=0.685, p<0.01) and NO3-N (r=0.723, p<0.01). In addition, similarly Pseudanabaena limnetica and 2-MIB (r=0.717, p<0.01) was high. The odorous compounds appeared in the North Han River water were considered to be a direct relationship with cyanobacteria.

Monitoring of the Suspended Sediments Concentration in Gyeonggi-bay Using COMS/GOCI and Landsat ETM+ Images (COMS/GOCI 및 Landsat ETM+ 영상을 활용한 경기만 지역의 부유퇴적물 농 도 변화 모니터링)

  • Eom, Jinah;Lee, Yoon-Kyung;Choi, Jong-Kuk;Moon, Jeong-Eon;Ryu, Joo-Hyung;Won, Joong-Sun
    • Economic and Environmental Geology
    • /
    • v.47 no.1
    • /
    • pp.39-48
    • /
    • 2014
  • In coastal region, estuaries have complex environments where dissolved and particulate matters are mixed with marine water and substances. Suspended sediment (SS) dynamics in coastal water, in particular, plays a major role in erosion/deposition processes, biomass primary production and the transport of nutrients, micropollutants, heavy metals, etc. Temporal variation in suspended sediment concentration (SSC) can be used to explain erosion/sedimentation patterns within coastal zones. Remotely sensed data can be an efficient tool for mapping SS in coastal waters. In this study, we analyzed the variation in SSC in coastal water using the Geostationary Ocean Color Imager (GOCI) and Landsat Enhanced Thematic Mapper Plus (ETM+) in Gyeonggi-bay. Daily variations in GOCI-derived SSC showed low values during ebb time. Current velocity and water level at 9 and 10 am is 37.6, 28.65 $cm{\cdot}s^{-1}$ and -1.23, -0.61 m respectively. Water level has increased to 1.18 m at flood time. In other words, strong current velocity and increased water level affected high SSC value before flood time but SSC decreased after flood time. Also, we compared seasonal SSC with the river discharge from the Han River and the Imjin River. In summer season, river discharge showed high amount, when SSC had high value near the inland. At this time SSC in open sea had low value. In contrast, river discharge amount from inland showed low value in winter season and, consequently, SSC in the open sea had high value because of northwest monsoon.