• Title/Summary/Keyword: Water Shock

Search Result 358, Processing Time 0.035 seconds

Experimental Study of Evaluating Shoe Cushioning System Using Shock Absorption Pocket (신발의 보행 충격 완화 장치에 대한 충격 흡수력의 실험적 평가)

  • Sun Chang-Hwa;Son Kwon;Moon Byung-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.3 s.246
    • /
    • pp.241-248
    • /
    • 2006
  • Shoe cushioning systems are important to prevent body injuries. This study developed and evaluated a cushioning system to reduce impact force on the heel. The cushioning system suggested consist of a polyurethane pocket, which contains water and porous grains of open cell to dissipate the energy effectively. Load-displacement curves fer the shoe cushioning system were obtained from an instrumented testing machine and the results were compared with various pockets with air, water or grains. Mechanical testings showed that the pocket with 5g porous grain was the best for the cushioning system. This system can be applied to the design of various kind of sport shoes.

Experimental Study of Shoe Cushioning System of Shock Absorption Using Fluid Damper with Nano Particles (나노입자 유체댐퍼를 이용한 보행 충격 완화 장치의 충격 흡수에 대한 실험적 연구)

  • Moon B.Y.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.2 no.2
    • /
    • pp.14-20
    • /
    • 2005
  • This study developed and evaluated a shoe cushioning system to reduce impact force patterns during running. The shoe cushioning system is composed with a poly urethane pocket, which contains water and porous grains to absorb the force against the weight inside the pocket. Load-displacement curves for the shoe cushioning system were obtained from an instrumented testing machine and the results were compared with various pockets that have air, water or grains. Mechanical testings showed that the pocket with 5 g particles was the best for the shoe cushioning system. This founding will be helpful to designing the shoe.

  • PDF

An investigation on the actual condition of electrical facilities in domestic fountains (분수대 전기설비의 국내 적용실태분석)

  • Kim, H.S.;Kim, C.M.;Hwang, K.S.;Kim, S.K.
    • Proceedings of the KIEE Conference
    • /
    • 2005.11c
    • /
    • pp.44-46
    • /
    • 2005
  • An Electrical facilities of fountain is one of the vulnerable facilities because it is exposed to water. Especially, some children enter the fountain and play in the water in the hot season. For example, death from electrical shock in fountain was reported in domestic and foreign papers. In this paper, we analyzed the riskiness of electrical shock on the basis of a fact-finding survey and comparing the domestic and international standard of electrical facilities in fountains.

  • PDF

Stability Evaluation of Phased Isolation Intra-Clarifier Ditch Process on Short-Term Hydraulic Shock Loading (단기 수리학적 충격부하시 침전지 내장형 상분리 산화구공정의 처리 안정성 평가)

  • Hong, Ki-Ho;Chang, Duk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.6
    • /
    • pp.791-799
    • /
    • 2005
  • The phased isolation intra-clarifier ditch system used in this study is a simplified novel process enhancing simultaneous removal of biological nitrogen and phosphorus in municipal wastewater in terms of elimination of additional pre-anaerobic reactor, external clarifier, recycle of sludge, and nitrified effluent recirculation by employing intrachannel clarifier. Laboratory-scale phased isolation ditch system was used to assess the treatability on municipal wastewater. When the system was operated at the HRTs of 6~12hours, SRTs of 9~31days, and cycle times of 2~8hours, the system showed removals of BOD, TN, and TP as high as 88~97%, 70~84%, and 65~90%, respectively. The rainfall in Korea is generally concentrated in summer because of site-specific characteristics. Especially, the wet season has set in on June to August. In combined sewers, seasonal variations are primarily a function of the amount of stormwater that enters the system. In order to investigate the effect of hydraulic shock loading on system performance, the laboratory-scale system was operated at an HRT of 6hours (two times of influent flowrate) during two cycles (8hours). The system performance slightly decreased by increasing of influent flowrate and decreasing of system HRT. Nitrification efficiency and TN removal were slightly decreased by increasing of influent flowrate (decreasing of system HRT), whereas, the denitrification was not affected by hydraulic shock loading. However, the higher system performance could be achieved again after four cycles. Thus, the phased isolation technology for enhanced biological nutrient removal in medium- and small-scale wastewater treatment plants suffering fluctuation of influent quality and flowrate.

Experimental Studies on the Risk Assessment of Electrical Fire and Shock of LED Lighting for Outdoor (옥외용 LED 조명의 전기화재 및 감전 위험성 평가에 대한 실험적 고찰)

  • Kim, Hyang-Kon;Gil, Hyoung-Jun;Kim, Dong-Ook;Kim, Dong-Woo;Lee, Ki-Yoen;Moon, Hyun-Wook;Kim, Hyeog-Soo;Kim, Myung-Soo;Kim, Man-Geon
    • Congress of the korean instutite of fire investigation
    • /
    • 2011.04a
    • /
    • pp.77-97
    • /
    • 2011
  • In this paper, we studied risk assessments of electrical fire and shock of LED lightings for outdoor. We examined national regulations about the LED lighting for outdoor and analyzed the appearances and compositions of LED lightings. And, We experimented about water proof, line to line fault, line to line breakdowm, overvoltage, line to line leakage in overhead line or water of LED lighting. From experimental results, we know that there are risks of electrical fire and shock by abnormal conditions at the LED lighting. Therefore, the uses of protective devices and insulated type of converter are required for the electrical safety. We expect that the results of this study would be helpful for the improvement of regulations and standards for electrical safety and for the investigations of electrical accidents of LED lightings.

  • PDF

Numerical Study on Compressible Multiphase Flow Using Diffuse Interface Method (Diffuse Interface Method를 이용한 압축성 다상 유동에 관한 수치적 연구)

  • Yoo, Young-Lin;Sung, Hong-Gye
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.2
    • /
    • pp.15-22
    • /
    • 2018
  • A compressible multiphase flow was investigated using a DIM consisting of seven equations, including the fifth-order MLP and a modified HLLC Riemann solver to achieve a precise interface structure of liquid and gas. The numerical methods were verified by comparing the flow structures of the high-pressure water and low-pressure air in the shock tube. A 2D air-helium shock-bubble interaction at the incident shock wave condition (Mach number 1.22) was numerically solved and verified using the experimental results.

Water Wave Propagation Caused by Underwater Blasting in a 3D Numerical Wave Tank (3차원 수치파동수조에서 수중발파에 의한 수면파의 전파해석)

  • Lee, Woo-Dong;Jeong, Yeon-Myeong;Choi, Kyu-Nam;Hur, Dong-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.364-376
    • /
    • 2019
  • When underwater blasting is conducted, both shock waves and water waves have an effect on adjacent coastal areas. In this study, an empirical formula for estimating the details of water waves caused by underwater blasting was applied to a non-reflected wave generation system, and a 3D numerical wave tank (NWT) was improved to reproduce the generation and propagation of such water waves. The maximum elevations of the propagated water waves were comparatively analyzed to determine the validity and effectiveness of the NWT. Good agreement was demonstrated between the empirical and simulation results. The generation and propagation of water waves were also simulated under each underwater blasting scenario for the removal of the Todo islet at the Busan Newport International Terminal (PNIT). It was determined that the water waves generated by the underwater blasting scenario examined in this study did not have a significant impact on the PNIT. In addition, multiple-charge blasting caused higher wave heights than single-charge blasting. As the amount of firing charge increased, the wave height also increased. Finally, larger water waves were generated during the later blasting conducted at a deeper depth as compared with an earlier blasting conducted at a relatively shallow depth.

Two-Dimensional Finite-Volume Unsteady-Flow Model for Shocks (충격파 모의를 위한 이차원 유한체적 비정상 흐름 모형)

  • Lee, Gil-Seong;Lee, Seong-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.3
    • /
    • pp.279-290
    • /
    • 1998
  • The height and speed of the shock wave are critical data in flood-control operations or in the design of channel walls and bridges along rivers with high flow velocities. Therefore, a numerical model is needed for simulating flow discontinuity over a wide range of conditions. In this study, a governing equation. As a Riemann solver Roe(1981)'s one is used. The model employs the modified MUSCL for handling the unstructured grids in this research. this model that adopts the explicit tradditional twl dimmensional dam break problems, two hydraulic dam break model is simulations, and a steady state simulation in a curved channel. Conclusions of this research are as follows : 1) the finite volume method can be combined with the Godonov-type method that is useful for modeling shocks. Hence, the finite volume method is suitable for modeling shocks. 2) The finite volume model combined with the modified MUSCL is successful in modeling shock. Therefore, modified MUSCL is proved to be valid.

  • PDF

Reliability and utility of a Dry Test Bench for testing the acoustic output from a ballistic shock wave therapeutic device (탄도형 충격파 치료기의 음향 출력 시험을 위한 Dry Test Bench의 신뢰성 및 유용성)

  • Jeon, Sung Joung;Lee, Min Young;Kwon, Oh Bin;Kim, Jong Min;Choi, Min Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.5
    • /
    • pp.589-600
    • /
    • 2022
  • In order to verify the reliability of Dry Test Bench (DTB) used for testing the output energy from ballistic extracorporeal shock wave therapeutic devices, the measurements with DTB were compared with the acoustic energy measured with a Laser Doppler Vibrometer (LDV) for a commercial ballistic ESWT device. It was shown that the mechanical energy detected with DTB had variability maintained within 5 % at the same output power setting and also had a linear correlation (adj. R2 = 0.991) with the acoustic energy measured with the LDV for the entire output power settings. Using the correlation between the two methods and the correlation on the acoustic energy measured in between air and water with the LDV, the DTB measurement can be used to estimate the energy flux density in water with an average error of 7.85 % for the entire output power settings of the ballistic shock wave generator considered in the experiment. DTB provides information limited to the output mechanical energy and therefore it is not suitable for testing the various acoustic output parameters required in IEC61846 and IEC63045. However, DTB that is simple in measurement principles and easy to use is expected for manufacturers and clinical users to monitor the performance of ballistic Extracorporeal Shock Wave Therapy (ESWT) devices.