• Title/Summary/Keyword: Water Shock

Search Result 358, Processing Time 0.03 seconds

EXACT RIEMANN SOLVER FOR THE AIR-WATER TWO-PHASE SHOCK TUBE PROBLEMS (공기-물 이상매질 충격파관 문제에 대한 정확한 Riemann 해법)

  • Yeom, G.S.;Chang, K.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.365-367
    • /
    • 2010
  • In this paper, we presented the exact Riemann solver for the air-water two-phase shock tube problems where the strength of the propagated sock wave is moderately weak. The shock tube has a diaphragm in the middle which separates water medium in the left and air medium in the right. By rupturing the diaphragm, various waves such as rarefaction wave, shock wave and contact discontinuity are propagated into water and air. Both fluids are treated as compressible, with the linearized equations of state. We used the isentropic relations for the air and water assuming a weak shock wave. We solved the shock tube problem considering a high pressure in the water and a low pressure in the air. The numerical results cleary showed a left-traveling rarefaction wave in the water, a right-traveling shock wave in the air, and the right-traveling material interface.

  • PDF

Computational Analysis of Mitigation of Shock wave using Water Column (액주를 이용한 충격파 완화에 대한 수치해석)

  • Jayabal, Rajasekar;Tae Ho, Kim;Heuy Dong, Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.49-57
    • /
    • 2022
  • The interaction of planar shock wave with rectangular water column is investigated numerically. The flow phenomenon like reflection, transmission, cavitation, recirculation of shock wave, and large negative pressure due to expansion waves was discussed qualitatively and quantitatively. The numerical simulation was performed in a shock tube with a water column, and planar shock was initiated with a pressure ratio of 10. Three cases of the water column with different thicknesses, namely 0.5D, 1D, and 2D, were installed and studied. Water naturally has a higher acoustic impedance than air and mitigates the shock wave considerably. The numerical simulations were modelled using Eulerian and Volume of fluids multiphase models. The Eulerian model assumes the water as a finite structure and can visualize the shockwave propagation inside the water column. Through the volume of fluids model, the stages of breakup of the water column and mitigation effects of water were addressed. The numerical model was validated against the experimental results. The computational results show that the installation of a water column significantly impacts the mitigation of shock wave.

Effect of Cooling Rate on Thermal Shock Behavior of Alumina Ceramics ($Al_2O_3$ 세라믹스 열충격에 미치는 냉각 조건의 영향)

  • 한봉석;이홍림;전명철
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.7
    • /
    • pp.767-773
    • /
    • 1997
  • Thermal shock behavior of alumina ceramics were studied by quenching the heated alumina specimen into the water of various temperatures over 0~10$0^{\circ}C$. The critical thermal shock temperature difference ( Tc) of the specimen decreased almost linearly from 275$^{\circ}C$ to 20$0^{\circ}C$ with increase in the cooling water temperature over 0~6$0^{\circ}C$. It is probably due to the increase of the maximum cooling rate which is dependent of the convection heat transfer coefficient. The convection heat transfer coefficient is a function of the temperature of the cooling water. However, the critical thermal shock temperature difference( Tc) of the specimen increased at 25$0^{\circ}C$ over 80~10$0^{\circ}C$ due to the film boiling of the cooling water. The maximum cooling rate, which brings about the maximum thermal stress of the specimen in the cooling process, was observed to increase linearly with the increase in the quenching temperature difference of the specimen due to the linear relationship of the convection heat transfer coefficient with the water temperature over 0~6$0^{\circ}C$. The critical maximum cooling rate for thermal shock fracture was observed almost constant to be about 260$\pm$1$0^{\circ}C$/s for all water temperatures over 0~6$0^{\circ}C$. Therefore, thermal shock behavior of alumina ceramics is greatly influenced by the convection heat transfer coefficient of the cooling water.

  • PDF

Changes in Water and Electrolyte Distribution and Blood Glucose Concentration following Irreversible Hemorrhagic Shock (비가역성 실혈성 쇽에서 본 가토심근, 혈장의 전해질 및 혈당량 변화)

  • Kim, Ki-Whan;Nam, Kee-Yong
    • The Korean Journal of Physiology
    • /
    • v.2 no.1
    • /
    • pp.47-52
    • /
    • 1968
  • Twenty white rabbits anesthetized with nembutal (30 mg/kg) were employed in this experiment. Five of them served as controls; the remaining rabbits as experimental group were subjected to irreversible hemorrhagic shock. Shock was induced by bleeding the animals until mean blood pressure decreased to a level of 50-40 mmHg. This level of pressure was maintained for 3-4 hours, after which the drawn blood was reinfused. The reinfusion of blood caused the elevation of arterial pressure almost the control level for some minutes, after which a gradual and progressive decline of blood pressure became evident. This decline was thought to be the result from irreversible hemorrhagic shock. When mean blood pressure declined to less than 50 mmHg, chest was opened and samples of arterial blood and left ventricular muscle were taken. Left ventricular muscle and blood plasma were analyzed for potassium, sodium, chloride and water content. Blood glucose concentration was determined by Somogyi-Nelson's method. Extracellular and intracellular myocardial water and electrolyte content were calculated on the basis that electrolytes are distributed between plasma water and interstitial water according to Gibbs-Donnan equilibrium. In this calculation extracellular water was substituted for Na space. The findings obtained were as follows: 1. The concentration of blood glucose was 87mg% in the controls and it rose to 222 mg% in shock (P<0.01). 2. Plasma potassium elevated significantly from 3.3 mEq/l in controls to 8.0 mEq/l in shock (P<0.01), while small decreases in sodium (151-146 mEq/l) and chloride (102-96 mEq/l) were observed (P<0.3, P<0.1), 3. The changes of blood water content (83.1-84.3%) and cardiac water content (77.5-78.3 gm/100gm WT) were observed. 4. In control animals myocardial potassium levels which averaged 30.2 mEq/100 gmDT rose significantly to 40.3 mEq/100 gmDT in shock (P<0.01), while moderate decreases in sodium(16.3-14.3 mEq/100 gmDT) were observed in shock. 5. The calculated transmembrane resting potential of left ventricular muscle of control animals averaged 95 mV, while rabbits in shock averaged 77 mV. (P <0.01). The findings of this experiment do not correspond with the conclusions that myocardial depression seems to be the cause of irreversible hemorrhagic shock, because the excitability of heart muscle is elevated. From the point of view that the lowered transmembrane resting potential, the cause of death in terminal stage of irreversible hemorrhagic shock may be ventricular fibrillation. It can't be said, however, that the lowered transmembrane resting potential is responsible for the transition from reversible to irreversible hemorrhagic shock. The marked increase in blood glucose suggested that glycogenolysis in the liver is favorably active in shock.

  • PDF

Hazard Assessment by Electric Shock both on the Ground and in the Water (지상과 수중에서 전격에 의한 위험성 평가)

  • Kim, Doo-Hyun;Kang, Dong-Kyu;Lee, Jong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.2
    • /
    • pp.26-33
    • /
    • 2004
  • This study presents a hazard assessment of the human body exposed to electic shock considering various parameters which affect severity of the electric shock. The present study has two research objectives; one is no analyze hazards of the human body by the elctric shock both on the ground and in the water. The other is to understand the mechnism of the electric shock. In order to achieve these objectives the hazard of shock is estimated by comparing with physiological effects of electric curren througn the human body according to variation of shock parameters of shock circuits. The shock parameters adopted in this paper consist of body resistance, resistance of protective equipment, ground resistance, shock duration, depth of gound surface layer, relection factor, permissible touch voltage, body current and body voltage. Besides, safety standard determining hazard degree of the human body is introduced. And hazard of the human body due to the electric shock is quantitatibely assessed in consideration of data obtained by the method suggested herein, and final results are presented and discussed.

Examination on Shock Vibration of Feed-Water Recirculation piping in Power Site (발전소 대형 수배관계의 충격성 이상 과도진동의 특성 고찰 사례)

  • Kim, Yeon-Whan;Yang, Gyeong-Hyeon;Bae, Si-Yeon;Yu, Jae-Myeong;Jo, Jong-Hyeon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.475-479
    • /
    • 2011
  • Leak problem with large pressure drop occurrs non-periodic shock pulsation due to the deterioration of a isolation valve in feed-water recirculation piping system. This paper discusses on the shock vibration and noise occurred due to the effect of acoustical shock pulsations by degradation of the isolation valve in a power site.

  • PDF

The Calculation of Hugoniot Adiabatics and Viscosity of Shock Compressed Water

  • Baik, Dae-Hyun;Jhon, Mu-Shik;Yoon, Byoung-Jip
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.4
    • /
    • pp.293-296
    • /
    • 1986
  • The Hugoniot adiabatics and viscosity of shock compressed water have been calculated by applying the significant structure theory of water. To consider the effects of pressure and temperature, the sublimation energy has been expressed by the spherically averaged Stillinger-Rahman ST2 potential. Good agreements between theory and experiment are obtained in the whole extreme ranges of shock wave condition up to 100 GPa (lMbar).

Increase of the Shock Thickness in Sea Water Due to Molecular Relaxation Processes

  • Kang, Jong-Min
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.4E
    • /
    • pp.72-77
    • /
    • 1996
  • A relatively simple theoretical model for predicting the shock thickness is applied to the weak shock propagation through sea water, where the boric acid and the magnesium sulfate are the major relaxation processes. The relaxation effects increases the shock thickness by the factor of 103 compared with the thickness based on the classical absorption only. In seawater with the ambient pressure of 125 atm and 15℃ temperature, the effects of the boric acid are dominant when the peak pressure is less than 0.3 atm and 3 atm. For the shocks of peak pressure greater than 5 atm, the effects of the classical absorption theory is enough to describe the shock thickness. The effects of the ambient pressure and temperature on the shock thickness are also evaluated.

  • PDF

Effect of the Residual Excess Pore Water Pressure on the Slope Stability Subjected to Earthquake Motion (잔류 과잉공극수압이 지진 하중을 받는 사면의 안정에 미치는 영향)

  • Lee, Jun-Dae;Kwon, Young-Cheul;Bae, Woo-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.2 s.74
    • /
    • pp.107-113
    • /
    • 2006
  • Earthquake motion is one of the most significant influence factors on the slope stability. In this paper, an effective stress analysis with the elasto-plastic model was carried out to investigate the behavior of the slope stability subjected to the successive two strong earthquake motions, fore and main shock. The major influence of fore shock to the slope stability was considered as the existence of the residual excess pore water pressure. The paper presents the influence of the existence of the fore shock to slope stability using the numerical analyses. In conclusion, the excess pore pressure by the fore shock was not dissipated during the 7hrs of consolidation. By this residual excess pore water pressure, the factor of safety at the sliding face showed the minimum values, and the deformations of slope was large when compared with the case that considered the main shock only. Furthermore, the minimum of the factor of safety came out after the end of the earthquake motion.