• Title/Summary/Keyword: Water Rocket

Search Result 139, Processing Time 0.025 seconds

Spray Characteristics of Nonimpinging-type Injector According to the Injection Pressure Variation and Angular Direction of Orifices (분사압력 및 분사각에 따른 비충돌형 인젝터의 분무특성)

  • Jung, Hun;Kim, Jong-Hyun;Kim, Jeong-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.3
    • /
    • pp.1-8
    • /
    • 2012
  • A water-flow test was carried out for the nonimpinging-type injector to be equipped on 70 N-class liquid-rocket engine under development. Breakup patterns of injector-spray transit from a smooth jet to wavy one as the injection angle increases, whereas spray-breakup lengths are inversely proportional to the injection pressure. It is confirmed that there exist ruffles on the surface of liquid column, which could be caught through the instantaneous spray images captured by high-speed camera. A phenomenon of spray shedding amplified at the specific pressure level of 0.93 MPa was an unexpected behavior of the injected stream and it is to be investigated further.

Effect of Mixture Ratio Variation near Chamber Wall in Liquid Rocket Engine

  • Han, Poong-Gyoo;Kim, Kyoung-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.2
    • /
    • pp.51-60
    • /
    • 2003
  • An experimental research program is being undertaken to develop a regeneratively-cooled experimental thrust chamber of liquid rocket engine using liquefied natural gas and liquid oxygen as propellants. Prior to firing test using a regenerative cooling with liquefied natural gas in this program, several firing tests were conducted with water as a coolant. Experimental thrust chambers with a thrust of about 10tf were developed and their firing test facility was built up. Injector used in the thrust chamber was of shear-coaxial type appropriate for propellants of gas and liquid phase and cooling channels are of milled rectangular configuration. Periodical variation of the soot deposition and discoloration was observed through an eyes' inspection on the inner wall of a combustion chamber and a nozzle after each firing test, and an intuitive concept of the periodical variation of mixture ratio near the inner wall of a combustion chamber and a nozzle at once was brought about and analyzed quantitatively. Thermal heat flux to the coolant was calculated and modified with the periodical variation model of mixture ratio, and the increment of coolant temperature at cooling channels was compared with measured one.

The Dynamic Characteristics of Pump-fed Hydraulics due to Different Diameter Ratios of the Plate Orifice (펌프 가압식 추진제 공급유로에서의 오리피스 개도에 따른 동적 수력특성 변화)

  • Kim, Hyung-Min;Ko, Tae-Ho;Kim, Sang-Min;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.313-317
    • /
    • 2009
  • The orifice in the propellent feeding pipe line of a Liquid Rocket Engine(LRE) is used to balance the pressure of the pipe line. When a LRE starts up, pressure at the upstream of the orifice rapidly increases. In this case, pressure waves occuring by resistance of the orifice may induce low frequency instability in the pipe line. For this reason the study of dynamic characteristics of orifices is needed to prevent the instability. A pump is used to build up the pressure, and the pressure is measured upstream and downstream of the orifice when the orifice diameter is changed. With the increase of orifice diameter, water hammer decreases, but the effect of resistance downstream is increases.

  • PDF

A Numerical Study on Cooling Characteristics of a Rocket-engine-based Incinerator Devised for High Burning Rate of Solid Particles (고체입자의 높은 연소율을 갖기 위해 고안된 로켓 엔진 기반 소각로의 냉각 해석)

  • Son, Jinwoo;Sohn, Chae Hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.1-10
    • /
    • 2016
  • Cooling characteristics are investigated numerically in the chamber for high-performance burnout of wastes with solid phase. Before the combustion chamber is manufactured, combustion analysis is performed for evaluation of burning rate and cooling performance. A water cooling method is applied and its feasibility for cooling is examined depending on coolant flow rate. Another method of complex cooling is adopted by combining air film cooling with water cooling, leading to improved cooling performance.

An experimental study on the liquid rocket engine combustion gas cooling (액체로켓 엔진 연소가스 냉각에 관한 실험적 연구)

  • 김현중;유석진;임하영;우유철
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.266-269
    • /
    • 2003
  • During liquid rocket engine combustion, the resulting combustion gas has flow characteristics of high temperature and high velocity. An experimental study was performed to obtain basic data for a flame deflector design that is endurable under such flow characteristics. While the injected-water cools down the combustion plume, temperature and pressure of the plume was measured. As the experiment is being performed, gas temperature was measured using infrared cameras, and the gas temperature data was compared with the temperature data from the sensor in the plume. With the results of this experiment, we were able to obtain applicable temperature data for flame deflector design and predict the performance and structural strength required for installation of water injector.

  • PDF

Water Performance Test of Pumps for a 7 Ton Class Rocket Engine (7톤급 로켓엔진용 펌프 수류 성능시험)

  • Hong, Soonsam;Kim, Daejin;Choi, Changho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.89-95
    • /
    • 2015
  • Performance test was conducted for an oxidizer pump and a fuel pump for a 7 ton class rocket engine, by using water. The pumps were driven by an electric motor. The hydrodynamic performance and the suction performance were measured at flow ratio of the design and off-design conditions. Head-flow curve, efficiency-flow curve, and head-cavitation number curve were obtained. It is confirmed that the pumps can satisfy the design requirements of hydrodynamic performance in terms of the head and the efficiency. The pumps also satisfied the design requirements of suction performance.

The study of manufacturing the oxidizer(Hydrogen Peroxide) feeding system of liquid rocket engine (액체로켓엔진 산화제(과산화수소) 공급계 구축에 관한 연구)

  • Jeon, Jun-Su;Jeong, Jae-Hoon;Kim, Yoo;Ko, Young-Sung;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.33-36
    • /
    • 2009
  • This study suggests manufacturing and cleaning the feeding system of hydrogen peroxide to use oxidizer of liquid rocket. We established the process of cleaning and passivation in order to minimize the pollution of Hydrogen Peroxide feeding system. And, we verified stability of the manufactured feeding system by leak test & hot test.

  • PDF

Flow Coefficient Experiments of a Hypergolic Igniter with Rupture Disc Ends (파열판 방식 연소기 점화기의 유량계수 시험)

  • Yoo, Jaehan;Lee, Joongyoup;Lee, Soo Yong
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.122-128
    • /
    • 2012
  • Many of the liquid rocket engines use a hypergolic igniter with rupture disc ends located in the combustion chamber ignition line. In this study, the flow coefficient tests of the igniter, which have a solenoid valve upstream, were performed. The tension-type rupture discs for radial and circumferential scores and the igniter with them were tested using water at room temperature. The effects of the score, flow rate, the disc thickness, gas pocket and the solenoid valve on the coefficient were analyzed.

Hydrodynamic Performance Test of a Turbopump Assembly (터보펌프 조립체의 수력 성능 시험)

  • Hong, Soon-Sam;Kim, Dae-Jin;Kim, Jin-Sun;Kim, Jin-Han
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.4
    • /
    • pp.249-254
    • /
    • 2008
  • Hydrodynamic performance test of a turbopump for a liquid rocket engine is carried out. The turbopump is composed of an oxidizer pump, a fuel pump and a turbine, and the two pumps are driven by the turbine. In the test, water is used for the pumps as working media and air is used for the turbine. Performance parameters of pumps and a turbine are drawn, and a power balance between the pumps and the turbine are calculated. The calculation shows a good power balance, which implies that the pump component tests, the turbine component test and the assembly test are reliably performed. At the starting period of the test, pressure rise-flow rate curve of a pump gradually approaches the ideal curve which could be obtained by very slow starting.

Combustion Performance Tests of High Pressure Subscale Liquid Rocket Combustors (고압 축소형 연소기의 연소 성능 시험)

  • Kim, Jong-Gyu;Lee, Kwang-Jin;Seo, Seong-Hyeon;Lim, Byoung-Jik;Ahn, Kyu-Bok;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.128-134
    • /
    • 2007
  • Combustion performance and characteristics of high-pressure subscale liquid rocket combustors were studied experimentally. Four different models of combustor were considered in this paper. The high-pressure subscale combustor is composed of the mixing head, the water cooling cylinder and the nozzle. One model of the combustors employed regenerative cooling combustor in that the kerosene used for the chamber cooling is burned. This combustor was damaged due to a high frequency combustion instability occurred during a firing test. The results of the firing tests, comparison of performance, and characteristics of static and dynamic pressures of the combustors are described.

  • PDF