• Title/Summary/Keyword: Water Risk

Search Result 1,703, Processing Time 0.03 seconds

Risk analysis of red water and turbid water based on seasonal water usage (계절별 수도사용량에 따른 적수 및 탁수발생 위험도 분석)

  • Han, Jin Woo;Lee, Sang Mok;Kwon, Hyuk Jae
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.7
    • /
    • pp.451-460
    • /
    • 2023
  • In this study, the risk of red water and turbid water occurrence was analyzed by classifying it into detachment risk and deposition risk. First, risk factors for red water and turbid water were determined, and hydraulic analysis was conducted considering seasonal water consumption. The applied area was Cheongju City, and the risk analysis was conducted across 13 areas, and the areas with high deposition risk and high detachment risk were selected. The high risk of both detachment and deposition can be judged as an area with a very high probability of causing water quality problems. The areas with the highest deposition risk and detachment risk are the old towns of Nae deok1-dong and Yul1yang-dong, which are the oldest areas in Cheongju City with an age of more than 30 service years of pipe installation. By analyzing the risk of deposition and detachment, it will be possible to strengthen the maintenance function of the water supply network to provide the safe water to citizens and increase their confidence for tap water.

Risk Assessment of Drinking Water Pollutants (다중이용시설에서의 먹는물 위해성 평가)

  • Back, Young Maan;Chung, Yong;Park, Je Chul;Kim, Hyung Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.1107-1108
    • /
    • 2006
  • As expanding municipal and industrial areas since started the economic development plan in earnest in 1970's, the water resource, mainly river surface water has been seriously polluted. Nevertheless, being upgraded in their treatment technologies for the drinking water, the safety has been issued one of crucially social problem in Korea. The water authorities has tried to improve the quality such as amending the drinking water quality standard to be monitored; hazardous chemicals and microorganis have been added and now 55 items, before 47 items, since in 2002. The Water Authorities of Seoul, the capital city of Korea, planned to assess the safty of drinking water quality after amended the standard. This study was conducted to assess the risk due to polluted chemicals including 21 heavy metals, VOCs, pesticides, PAHs, DBPs and organic chemicals among the regulated items. The risk assessment were undertaken hazard identification, exposure assessment, dose-response assessment and risk characterization. For the exposoure assessment, tap water, bottled water and purified water were sampled and analyzed in February, 2004. Risk characterization of detected chemicals was categorized into carcinogenecity and noncarcinogenecity, and estimated the excess of carcinogens and compapared with the reference dose (RfD) of noncarcinogenns. The excess risk of carcinogens from samples were considered comparatively in the acceptable levels; $10^{-6}$ for cancer risk and hazard quotient (HQ) 1.0 for noncancer risk. The deteced levels were estimated in $10^{-5}{\sim}10^{-6}$ of cancer risk and below 1.0 of HQ of noncancer risk. While three kinds of water were determined within the acceptal levels, DBPs were detected in tap water and purified were and some undesireable chemicals such as more fluoride detected rather than the quality stanadard. For the drinking water safety, it shoud be continuously monitored, assessed and managed as well risk communiction between the authoritis and public.

A study on the application of water safety plans for the hazard risk management of tap water (수돗물 위해요소 리스크 관리를 위한 물안전계획 적용 연구)

  • Kim, Jinkeun;Kim, Dooil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.4
    • /
    • pp.259-268
    • /
    • 2019
  • One of the most effective methods to consistently ensure the safety of a tap water supply can be achieved by application of a comprehensive risk assessment and risk management approach for drinking water supply systems. This approach can be termed water safety plans(WSP) which recommended by WHO(world health organization) and IWA(international water association). For the introduction of WSP into Korea, 150 hazards were identified all steps in drinking water supply from catchment to consumer and risk assessment tool based on frequency and consequence of hazards were developed. Then, developed risk assessment tool by this research was implemented at a water treatment plant($Q=25,000m^3/d$) to verify its applicability, and several amendments were recommended; classification of water source should be changed from groundwater to stream to strengthen water quality monitoring contaminants and frequencies; installation of aquarium to monitor intrusion of toxic substances into raw water; relocation or new installation on-line water quality analyzers for efficient water quality monitoring; change of chlorination chemical from solid phase($Ca(OCl)_2$) to liquid phase(NaOCl) to improve soundness of chlorination. It was also meaningful to propose hazards and risk assessment tool appropriate for Korea drinking water supply systems through this research which has been inconsistent among water treatment authorities.

A two-step interval risk assessment method for water inrush during seaside tunnel excavation

  • Zhou, Binghua;Xue, Yiguo;Li, Zhiqiang;Gao, Haidong;Su, Maoxin;Qiu, Daohong;Kong, Fanmeng
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.573-584
    • /
    • 2022
  • Water inrush may occur during seaside urban tunnel excavation. Various factors affect the water inrush, and the water inrush mechanism is complex. In this study, nine evaluation indices having potential effects on water inrush were analysed. Specifically, the geographic and geomorphic conditions, unfavourable geology, distance from the tunnel to sea, strength of the surrounding rock, groundwater level, tidal action, cyclical footage, grouting pressure, and grouting reinforced region were analysed. Furthermore, a two-step interval risk assessment method for water inrush management during seaside urban tunnel excavation was developed by a multi-index system and interval risk assessment comprised of an interval analytic hierarchy process, fuzzy comprehensive evaluation, and relative superiority analysis. The novel assessment method was applied to the Haicang Tunnel successfully. A preliminary interval risk assessment method for water inrush was performed based on engineering geological conditions. As a result, the risk level fell into a risk level IV, which represents a section with high risk. Subsequently, a secondary interval risk assessment method was performed based on engineering geological conditions and construction conditions. The risk level of water inrush is reduced to a risk level II. The results agreed with the current tunnel situation, which verified the reliability of this approach.

Quantitative Microbial Risk Assessment of Wastewater Reuse for Irrigation in Paddy Field (하수처리수의 논 관개용수 재이용을 위한 미생물 위해성 평가)

  • Yoon Chun-Gyeong;Han Jung-Yoon;Jung Kwang-Wook;Jang Jae-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.2
    • /
    • pp.77-87
    • /
    • 2006
  • The reuse of wastewater for agricultural irrigation may cause human health risk as a result of exposure to pathogens. This study conducted the quantitative microbial risk assessment in paddy field irrigated with treated wastewater. Six treatments were used to irrigate the paddy field from Year 2003 to Year 2005: biofilter-effluent, UV-disinfected water (6, 16, 40, 68 $mW s cm^{-2}$), pond-treated water, wetland-treated water, conventional irrigation water and tap water. Total coliforms, fecal coliforms and E. coli were monitored during rice growing period. Beta - Poisson model was employed to calculate the microbial risk of pathogens ingestion that may occur to farmers and neighbor children. Uncertainty of risk was estimated using Monte Carlo simulation. In this study, the microbial risk was higher during initial cultivation (end of May$\sim$June), and it decreased with time. Biofilter effluent (secondary effluent) irrigation showed higher risk values than others (>$10^{-4}$) and irrigation with UV-disinfected water has the lowest risk range ($10^{-6}{\sim}10^{-5}$). The risk value estimated in 2005 was lower than risk value in 2003 and 2004, it is likely due to clean tap water irrigation in initial transplanting stage. It is suggested that irrigation with UV-disinfected water and pond-treated water would reduce the microbial risk associated with wastewater irrigation in paddy field. In addition, the first irrigation water quality significantly affected the subsequent microbial risk.

Microbial Risk Assessment using E. coli in UV Disinfected Wastewater Irrigation on Paddy

  • Rhee, Han-Pil;Yoon, Chun-G.;Jung, Kwang-Wook;Son, Jang-Won
    • Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.120-125
    • /
    • 2009
  • Water stress has become a major concern in agriculture. Korea suffers from limited agricultural water supply, and wastewater reuse has been recommended as an alternative solution.A study was performed to examine the effects of microorganism concentration in the ponded-water of a paddy rice field with reclaimed-water irrigation for evaluating the microbial risk to farmers and neighborhoodchildren.Most epidemiological studies were performed based on an upland field, and they may not directly applicable to paddy fields. Beta-Poisson model was used to estimate the microbial risk of pathogen ingestion. Their risk value increased significantly high level after irrigation and precipitation.It implies that agricultural activities such as plowing, and fertilizing, and precipitation need be practiced a few days after irrigation considering health risks. The results about field application of the microbial risk assessment using E. coli showed difference according to monitoring time and treatment plot. Result of the microbial risk assessment showed that risk values of ground-water and reclaimed secondary waste water irrigation were lower than directly use of wastewater treatment plants' effluent. This paper should be viewed as a first step in the application of quantitative microbial risk assessment of E. coli to wastewater reuse in a paddy rice farming.

Health Risk Assessment of Cryptosporidium in Tap Water in Korea (우리나라 먹는물의 크립토스포리디움에 의한 건강위해도 평가 연구)

  • Lee, Mok-Young;Park, Sang-Jung;Cho, Eun-Joo;Park, Su-Jeong;Han, Sun-Hee;Kwon, Oh-Sang
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.1
    • /
    • pp.32-42
    • /
    • 2013
  • Objectives: Cryptosporidium, a protozoan parasite, has been recognized as a frequent cause of waterborne disease due to its extremely strong resistance against chlorine disinfection. Although there has as yet been no report of a Cryptosporidium outbreak through drinking water in Korea, it is important to estimate the health risk of Cryptosporidium in water supply systems because of the various infection cases in human and domestic animals and frequent detection reports on their oocysts in water environments. Methods: This study evaluated the annual infection risk of Cryptosporidium in tap water using the quantitative microbial risk assessment technique. Exposure assessment was performed upon the results of a national survey on Cryptosporidium on the water sources of 97 large-scale water purification plants in Korea, water treatment efficacy, and daily unboiled tap water consumption. The estimates of the US Environmental Protection Agency on the mean likelihood of infection from ingesting one oocyst were applied for effect assessment. Results: Using probabilistic methods, mean annual infection risk of Cryptosporidiosis by the intake of tap water was estimated to fall within the range of $2.3{\times}10^{-4}$ to $1.0{\times}10^{-3}$ (median $5.7{\times}10^{-4}$). The risk in using river sources was predicted to be four times higher than with lake sources. With 0.5-log higher removal efficacy, the risk was estimated to be $1.8{\times}10^{-4}$, and could then be lowered by one-third. Conclusions: These estimations can be compared with acceptable risk and then used to determine the adequacy and priority of various drinking water quality strategies such as the establishment of new treatment technology.

Study on Measurement of Flood Risk and Forecasting Model (홍수 위험도 척도 및 예측모형 연구)

  • Kwon, S.H.;Oh, H.S.
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.1
    • /
    • pp.118-123
    • /
    • 2015
  • There have been various studies on measurements of flood risk and forecasting models. For river and dam region, PDF and FVI has been proposed for measurement of flood risk and regression models have been applied for forecasting model. For Bo region unlikely river or dam region, flood risk would unexpectedly increase due to outgoing water to keep water amount under the designated risk level even the drain system could hardly manage the water amount. GFI and general linear model was proposed for flood risk measurement and forecasting model. In this paper, FVI with the consideration of duration on GFI was proposed for flood risk measurement at Bo region. General linear model was applied to the empirical data from Bo region of Nadong river to derive the forecasting model of FVI at three different values of Base High Level, 2m, 2.5m and 3m. The significant predictor variables on the target variable, FVI were as follows: ground water level based on sea level with negative effect, difference between ground altitude of ground water and river level with negative effect, and difference between ground water level and river level after Bo water being filled with positive sign for quantitative variables. And for qualitative variable, effective soil depth and ground soil type were significant for FVI.

A study of how Supply Chain companies correspond to water risk resulted from climate change (기후변화에 따른 기업 공급체인의 물 리스크 대응 실태 조사)

  • Park, Jiyoung;Park, Seogha;Lim, Byungsun;Kim, Chesoong
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.1
    • /
    • pp.149-168
    • /
    • 2015
  • It is expected that the temperature in Pyeongyang will be similar to that ($16.6^{\circ}C$) in Seogwipo in the late 21st century, and most of South Korea will enter the subtropical climate due to climate change. Change in the precipitation pattern like the range of fluctuation caused by climate change will lead to expanded uncertainty in securing reliable water supply, along with a serious impact on demands for living and industrial water due to change in the volume and period of river outflow. As industrial water for production activities is estimated based on the contract quantity, it is difficult to apply rationalization of water usage and incentives in water recycling. Therefore many companies are making efforts in complying with the effluent standard while spending few resources on such rationalization and recycling. This study researched water risk management over 115 Korean companies by 28 questions in 4 categories. Through the research, this study aims to understand water risk management levels and seek response plans.