• Title/Summary/Keyword: Water Remediation

Search Result 413, Processing Time 0.035 seconds

Remediation of cesium-contaminated fine soil using electrokinetic method

  • Kim, Ilgook;Kim, June-Hyun;Kim, Sung-Man;Park, Chan Woo;Yang, Hee-Man;Yoon, In-Ho
    • Membrane and Water Treatment
    • /
    • v.11 no.3
    • /
    • pp.189-193
    • /
    • 2020
  • In this study, electrokinetic remediation equipment was used to remove cesium (Cs) from clay soil and waste solution was treated with sorption process. The influence of electrokinetic process on the removal of Cs was evaluated under the condition of applied electric voltage of 15.0-20.0 V. In addition to monitoring the Cs removal, electrical current and temperature of the electrolyte during experiment were investigated. The removal efficiency of Cs from soil by electrokinetic method was more than 90%. After electrokinetic remediation, Cs was selectively separated from soil waste solution using sorbents. Various adsorption agents such as potassium nickel hexacyanoferrate (KNiHCF), Prussian blue, sodium tetraphenylborate (NaTPB), and zeolite were compared and KNiHCF showed the highest Cs removal efficiency. The Cs adsorption on KNiHCF reached equilibrium in 30 min. The maximum adsorption capacity was 120.4 mg/g at 0.1 g/L of adsorbent dosage. These results demonstrated that our proposed process combined electrokinetic remediation of soil and waste solution treatment with metal ferrocyanide can be a promising technique to decontaminate Cs-contaminated fine soil.

Application of Granulated Coal Ash for Remediation of Coastal Sediment (연안 저질 개선을 위한 석탄회 조립물의 활용)

  • Kim, Kyunghoi;Lee, In-Cheol;Ryu, Sung-Hoon;Saito, Tadashi;Hibino, Tadashi
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • This paper aims to explain the safety assessment and remediation mechanism of Granulated Coal Ash (GCA) as a material for the remediation of coastal sediments and to evaluate the improvement of the sediment in Kaita Bay, where GCA was applied. The concentrations of heavy metal contained in GCA and the dissolved amounts of heavy metal from GCA satisfied the criteria for soil and water pollution in Japan. The mechanisms on the remediation of coastal sediments using GCA is summarized as follows; (1) removal of phosphate and hydrogen sulfide (2) neutralization of acidic sediment (3) oxidation of reductive sediment (4) increase of water permeability (5) increase of soil strength (6) material for a base of seagrass. From the results obtained from the field experiment carried out in Kaita Bay, it was clarified that GCA is a promizing material for remediation of coastal sediment. This remediation technology can contribute to promote waste reduction in society and to decrease cost of coastal sediment remediation by applying GCA in other polluted coastal areas.

Microwave Remediation of Soils Contaminated by Volatile Organic Chemicals (마이크로파에 의한 휘발성 유기토양오염물질 제거에 관한 연구)

  • 문경환;김우현;이병철;김덕찬
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.3
    • /
    • pp.116-122
    • /
    • 1996
  • This study has been focused on the applicability of microwave treatment of soil contaminated by volitile organic chemicals. Substrates studied were sand and sandy soil. These substrates were impregnated with toluene, tetrachloroethylene, o-xylene and p-dichlorobenzene. The microwave treatment was conducted in a modified domestic microwave oven: 2450 MHz, 700 W. The sandy soil temperature added water went up rapidly to about 130$\circ$C for 4 minutes. And then, the temperature appeared to plateau out. A series of tests were performed to depict the effectiveness of microwave treatment technique to organic contaminants from soils. Removal efficiencies in sandy soil and sand were increased with increasing water content and exposure time. Microwave radiation penetrates the soil and heats water throughout the matrix. Therefore, addition of a certain amount of water to the contaminated soil can efficiently enhance the ability of the soil to absorb microwave energy and promote the evaporation of the volitile contaminants. And the vapour pressure of impregnated organic contaminants becomes lower. the removal efficiency becomes poor.

  • PDF

Study of Sewage Treatment using Multi-soil-layering System (다단토양층을 이용한 하수처리에 관한 연구)

  • Son, Dae-Hee;Chung, Yun-Chul;Shin, Jeong-Hoon;Jung, Jin-Young;Ahn, Dae-Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.3
    • /
    • pp.215-222
    • /
    • 2004
  • The sewages produced from small villages, rural community, drinking water reservation area and park which doesn't have sewage piping system can be caused a serious water pollution at the restricted areas. The objective of this research was to suggest an economical and effective sewage treatment method by investigating the removal of the organics, nitrogen, and phosphorus in the multi-soil-layering reactor. Soil, natural zeolite, and iron slag were used as a supporting media of multi-soil-layering in this research. The purpose of natural zeolite addition was to maintain the consistent ammonium exchange capacity by providing a sequential environment, and that of iron slag addition was to remove phosphorus by adsorption. Continuous experiment of lab-scale single-soil-layering (S-1), multi-soil-layering (S-2), and mixed-soil-layering (S-3) methods were studied to compare and optimize three different types of the reactors. The organic removal efficiencies showed more than 90% in all three reactors. While S-1 and S-3 reactors showed about T-N removal of 31%, 45%, respectively, the average T-N removal efficiency of the S-2 reactor represented an 87%. In conclusion, that results suggest that the multi-soil-layering reactor could be effectively utilized as a plant for treatment of small village sewage.

Remediation of Muddy Tidal Flat using Porous Pile (다공질 파일을 이용한 점토질 갯벌의 저질환경개선)

  • Kim, Kyunghoi;Lee, In-Cheol;Kang, Yoon-Koo;Hibino, Tadashi
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.1
    • /
    • pp.9-13
    • /
    • 2015
  • Field experiment were carried out to investigate the formation of ground water flow and remediation of muddy tidal flat by installation of porous pile at the tidal flat of brackish river located in Hiroshima City, Japan. After the installation of porous pile, the concentrations of Dissolved Oxygen (DO) in the interstitial water in the porous pile increased with maximum concentration of 4 mg/L due to a formation of groundwater flow. It was observed that a increase in Oxidation Reduction Potential (ORP) and a decrease in Ignition Loss (IL) in the porous pile site and these must be caused by the increase of dissolved oxygen in the interstitial water. From these results obtained above, it is concluded that the porous pile is an effective technology for remediation of muddy tidal flats.

Characterization of Three Antifungal Calcite-Forming Bacteria, Arthrobacter nicotianae KNUC2100, Bacillus thuringiensis KNUC2103, and Stenotrophomonas maltophilia KNUC2106, Derived from the Korean Islands, Dokdo and Their Application on Mortar

  • Park, Jong-Myong;Park, Sung-Jin;Ghim, Sa-Youl
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1269-1278
    • /
    • 2013
  • Crack remediation on the surface of cement mortar using microbiological calcium carbonate ($CaCO_3$) precipitation (MICP) has been investigated as a microbial sealing agent on construction materials. However, MICP research has never acknowledged the antifungal properties of calcite-forming bacteria (CFB). Since fungal colonization on concrete surfaces can trigger biodeterioration processes, fungi on concrete buildings have to be prevented. Therefore, to develop a microbial sealing agent that has antifungal properties to remediate cement cracks without deteriorative fungal colonization, we introduced an antifungal CFB isolated from oceanic islands (Dokdo islands, territory of South Korea, located at the edge of the East Sea in Korea.). The isolation of CFB was done using B4 or urea-$CaCl_2$ media. Furthermore, antifungal assays were done using the pairing culture and disk diffusion methods. Five isolated CFB showed $CaCO_3$ precipitation and antifungal activities against deteriorative fungal strains. Subsequently, five candidate bacteria were identified using 16S rDNA sequence analysis. Crack remediation, fungi growth inhibition, and water permeability reduction of antifungal CFB-treated cement surfaces were tested. All antifungal CFB showed crack remediation abilities, but only three strains (KNUC2100, 2103, and 2106) reduced the water permeability. Furthermore, these three strains showed fungi growth inhibition. This paper is the first application research of CFB that have antifungal activity, for an eco-friendly improvement of construction materials.

A Study on the pretreatment of Activated Sludge for Bio-hydrogen Production process (생물학적 수소생산 공정 개발을 위한 오니 슬러지 전처리에 대한 연구)

  • Kim Dong Kkun;Kim Ji Seong;Kim Ho Il;Lee Yu Na;Pak Dae Won
    • 한국생물공학회:학술대회논문집
    • /
    • 2004.07a
    • /
    • pp.21-33
    • /
    • 2004
  • In this study, Anaerobic sewage sludge in a batch reactor operating at $35^{\circ}C$ was used as the seed to investigate the effect of pretreatments of waste activated sludge and to evaluate its hydrogen production potential by anaerobic fermentation. Various pretreatments including physical, chemical and biological means were conducted to utilize for substrate. As a result, SCODcr of alkali and mechanical treatment was 15 and 12 times enhanced, compared with a supernatant of activated sludge. And SCODcr was 2 time increase after re-treatment with biological hydrolysis. Those were shown that sequential hybridized treatment of sludge by chemical & biological methods is most efficient process for sludge treatment. The pre-treatment activated sludge was tested to conform hydrogen production potential in batch experiments. When buffer solution was added to the activated sludge, hydrogen production potential increased as compare with no addition.

  • PDF

Continuous Bio-hydrogen Production from Food Waste and Waste Activated Sludge (음식물 쓰레기와 폐활성 슬러지를 이용한 생물학적 수소생산 및 수소생산 미생물 군집분석)

  • Kim, Dong-Kun;Lee, Yun-Jie;Kim, Dong-Im;Kim, Ji-Seong;Yu, Myong-Jin;Pak, Dae-Won;Kim, Mi-Sun;Sang, Byoung-In
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.438-442
    • /
    • 2005
  • Batch experiments were performed to investigate the effects of volumetric mixing ratio(v/v) of two substrates, food wastes(FW) and waste activated sludge(WAS). In batch experiments, optimum mixing ratio for hydrogen production was found at $10{\sim}20$ v/v % addition of WAS. CSTR(Continuous Stirred tank reactor) was operated to investigate the hydrogen productivity and the microbial community under various HRTs and volumetric mixing ratio(v/v) of two substrates. The maximum yield of specific hydrogen production, 140 mL/g VSS, was found at HRT of 2 day and the volumetric mixing ratio of 20:80(WAS:FW). The spatial distribution of hydrogen producing bacteria was observed in anaerobic fermentative reactor using fluorescent in situ hybridization(FISH) method.

BTEX Biodegradation in Contaminated Soil Samples Using Pure Isolates and Changes in the Mixed Microbial Community Structure (순수 분리 미생물을 이용한 오염 토양에서의 BTEX 생분해 특성과 미생물 군집 변화)

  • Chung, Kyung-Mi;Choi, Yong-Su;Hong, Seok-Won;Lee, Soo-Jin;Lee, Sang-Hyup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.7
    • /
    • pp.757-763
    • /
    • 2006
  • In our previous studies, we have isolated bacteria from BTEX-contaminated sediment, which utilized BTEX as a sole carbon source and $NO_3$-N as an electron acceptor. For the possibility of field application, we have applied co-culture of those isolates in the BTEX-contaminated soil and evaluated their biodegradation efficiencies. To investigate the relationship between the isolates and indigenous microorganism in soil, changes of microbial community structure in soil samples with respect to time were monitored. To examine this, soil samples were artificially contaminated with benzene, toluene, ethylbenzene and o-xylene. BTEX-degrading bacteria such as Pseudomonas stutzeri strain 15(DQ 202712), Klebsiells sp. strain 20(DQ 202715) and Citrobacter sp. strain A(DQ 202713) were injected into the soil samples in the ratio of 2:1:1. Our results showed that the highest BTEX biodegradation efficiency was achieved when both BTEX and $NO_3-N$ existed simultaneously. The change in soil microbial community structure was characterized by PCR-DGGE analysis comparing the relative DGGE band intensities. The band intensities of indigenous microorganisms in the soil were reduced by injecting co-culture of the three isolates. On the contrary, the relative band intensities of the isolates were increased. Among the three isolates, Pseudomonas stutzeri strain 15 rendered the highest band intensity. This indicates that the Pseudomonas stutzeri was the dominant microbial species found in the soil samples.

Effect of Electron Acceptors on the Anaerobic Biodegradation of BTEX and MTBE at Contaminated Sites (전자 수용체가 BTEX, MTBE로 오염된 토양의 혐기성 자연정화에 미치는 영향)

  • Kim, Won-Seok;Kim, Ji-Eun;Baek, Ji-Hye;Sang, Byoung-In
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.4
    • /
    • pp.403-409
    • /
    • 2005
  • Methyl tert-butyl ether (MTBE) contamination in groundwater often coexists with benzene, toluene, ethylbenzene, and xylene (BTEX) near the source of the plume. Then, groundwater contamination problems have been developed in areas where the chemical is used. Common sources of water contamination by BTEX and MTBE include leaking underground gasoline storage tanks and leaks and spills from above ground fuel storage tanks, etc. In oil-contaminated environments, anaerobic biodegradation of BTEX and MTBE depended on the concentration and distribution of terminal electron acceptor. In this study, effect of electron acceptor on the anaerobic biodegradation for BTEX and MTBE-contaminated soil was investigated. This study showed the anaerobic biodegradation of BTEX and MTBE in two different soils by using nitrate reduction, ferric iron reduction and sulfate reduction. The soil samples from the two fields were enriched for 65 days by providing BTEX and MTBE as a sole carbon source and nitrate, sulfate or iron as a terminal electron acceptor. This study clearly shows that degradation rate of BTEX and MTBE with electron acceptors is higher than that without electron acceptors. Degradation rate of Ethylbenzene and Xylene is higher than that of Benxene, Toluene, and MTBE. In case of Benzene, Ethylbenzene, and MTBE, nitrate has more activation. In case of Toluene and Xylene, sulfate has more activation.