• Title/Summary/Keyword: Water Region

Search Result 3,268, Processing Time 0.029 seconds

Water level fluctuations of the Tonle Sap derived from ALOS PALSAR

  • Choi, Jung-Hyun;Trung, Nguyen Van;Won, Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.188-191
    • /
    • 2008
  • The Tonle Sap, Cambodia, is a huge lake and periodically flooded due to monsoon climate. The incoming water causes intensive flooding that expands the lake over vast floodplain and wetland consisting mainly of forests and shrubs. Monitoring the water-level change over the floodplain is essential for flood prediction and water resource management. A main objective of this study is flood monitoring over Tonle Sap area using ALOS PALSAR. To study double-bounce effects in the lake, backscattering effect using ALOS PALSAR dual-polarization (HH, HV) data was examined. InSAR technique was applied for detection of water-level change. HH-polarization interferometric pairs between wet and dry seasons were best to measure water level change around northwestern parts of Tonle Sap. The seasonal pattern of water-level variations in Tonle Sap studied by InSAR method is similar to the past and altimeter data. However, water level variation measured by SAR was much smaller than that by altimeter because the DInSAR measurement only represents water level change at a given region of floodplain while altimeter provides water level variation at the central parts of the lake.

  • PDF

논산지역 간이급수시설 수질특성에 대한 연구

  • Go Gyeong-Seok;Lee Jin-Su;Kim Tong-Gwon;Kim Jae-Gon;Jo Seong-Hyeon;Seok Hui-Jun;Kim Hyeong-Su
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.344-347
    • /
    • 2005
  • The purpose of the study for the development of the technologies of water quality monitoring and contamination protection at water resource aquifer is to secure the groundwater as potable water resources. The results of water analysis as a basis of potable water criteria showed that 30 groundwater samples among 138 samples of small water supply system (21.7%) were exceeded the water criteria. The concentrations of Cl, $NO_3$ and Na for granite area are higher than those of gneiss and metasedimentary rocks of Ogcheon belt area and they are caused by the high vulnerability of groundwater at granite region where the residential area and cultivated land are concentrated. The spatial distribution of components indicated the close relationships between water quality and geology, land use, and topography. The multivariate statistical results showed that the water samples are divided into three groups by geology.

  • PDF

The Evaluation of Watershed Management Model using Behavioral Characteristics of Flow-duration Curve (유황곡선의 거동특성을 이용한 유역관리모형의 평가)

  • Kim, Joo Cheol;Lee, Sang Jin;Shin, Hyun Ho;Hwang, Man Ha
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.4
    • /
    • pp.573-579
    • /
    • 2009
  • The performance of Rainfall-Runoff Forecasting System (RRFS), the watershed management model for the Geum river basin, is evaluated based on the agreement between the simulated and observed hydrographs and the behavioral characteristics of the flow-duration curves. As a result, the simulated hydrographs are well agreed with the observed ones except high flow discharges. It is inferred that most of the errors in the simulated hydrographs are due to the misestimation of agricultural water use in $2^{nd}$ quarter and the discrepancy of the peak discharges in $3^{rd}$ quarter. It is however judged that RRFS would give the reliable runoff hydrographs from the point of view of continuous model application. And simulated flow-duration curves and flow-duration coefficients are also similar to the observed ones except flood flow region. From the above result it is confirmed that the construction of Yongdam dam improves the state of flow-duration curve at the Gongjoo station.

An Analysis of Environmental Water Release Patterns Considering Operation Rules in Enlarged Agricultural Reservoirs (둑높이기 농업용저수지의 운영기준에 따른 환경용수 방류패턴 분석)

  • Lee, Sang-Hyun;Yoo, Seung-Hwan;Park, Na-Young;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.3
    • /
    • pp.51-62
    • /
    • 2013
  • The importance of environmental water has been risen in terms of river ecosystem soundness with preventing stream flow depletion in rural area, while enlarging agricultural reservoir project is conducted under the 4 main river restoration project for supplying more water to 4 main rivers. The aim of this study was to estimate the amount of environmental water release and analyze the release pattern during non-irrigation season in enlarged agricultural reservoirs. The 4 reservoirs (Dansan, Samga, Geumbong, Changpyeong) located on the upper region of Nakdong river were simulated applying the operation rule which was determined by release criteria curves. The simulated results indicated that the more environmental water could be released than the spillway release and continuous release was achieved with smaller range of fluctuation. In case of Changpyeong reservoir, average 506.0 thousand $m^3$ environmental water could be released on Feb., and it was about twice as much as the spillway release before the enlargement, and also, the 18 thousand $m^3$/day environmental water could be supplied to a stream consistently after enlargement. From the results, it was expected that the additional environmental water release will improve stream water flow during dry season in terms of quantity and quality of water.

Long Term Runoff Simulation for Water Balance at Daecheong Basin (대청유역 물수지 분석을 위한 장기 유출모의)

  • Lee, Sang-Jin;Kim, Joo-Cheol;Noh, Joon-Woo
    • Journal of Environmental Science International
    • /
    • v.19 no.10
    • /
    • pp.1211-1217
    • /
    • 2010
  • For an accurate rainfall-runoff simulation in the river basin, it is important to consider not only evaluation of runoff model but also accurate runoff component. In this study long-term runoffs were simulated by means of watershed runoff model and the amounts of runoff components such as upstream inflow, surface runoff, return flow and dam release were evaluated based on the concept of water budget. SSARR model was applied to Daecheong basin, the upstream region of Geum river basin, and in turn the monthly runoff discharges of main control points in the basin were analyzed. In addition, for the purpose of providing the basic quantified water resources data the conceptual runoff amounts were estimated with water budget analysis and the reliability of the observations and the monthly runoff characteristics were investigated in depth. The yearly runoff ratios were also estimated and compared with the observations. From the results of the main control points, Yongdam, Hotan, Okcheon and Daecheong, the yearly runoff ratios of those points are consistent well with data reported previously.

Analysis of Variance of Paddy Water Demand Depending on Rice Transplanting Period and Ponding Depth (이앙시기 및 담수심 변화에 따른 논벼 수요량 변화 분석)

  • Cho, Gun-Ho;Choi, Kyung-Sook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.3
    • /
    • pp.75-85
    • /
    • 2021
  • This study evaluated variations in the paddy rice water demand based on the continuous changing in rice transplanting period and ponding depth at the four study paddy fields, which represent typical rice producing regions in Korea. Total 7 scenarios on rice transplanting periods were applied while minimum ponding depth of 0 and 20 mm were applied in accordance with maximum ponding depth ranging from 40 mm to 100 mm with 20 mm interval. The weather data from 2013 to 2019 was also considered. The results indicated that the highest rice water demand occurred at high temperature and low rainfall region. Increased rice transplanting periods showed higher rice water demand. The rice water demand for 51 transplanting days closely matched with the actual irrigation water supply. In case of ponding depth, the results showed that the minimum ponding depth had a proportional relationship with rice water demand, while maximum ponding depth showed the contrary results. Minimum ponding depth had a greater impact on rice water demand than the maximum ponding depth. Therefore, these results suggest that increasing the rice transplanting period, which reflects the current practice is desirable for a reliable estimation of rice water demand.

Recent Trends of Domestic and International Management and Research of Natural Mineral Water Used for Bottled Water (먹는샘물과 병입수로 이용되는 천연 광천수의 국내외 관리와 연구 동향 분석)

  • Koh, Dong-Chan;Ko, Kyung-Seok
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.6
    • /
    • pp.9-27
    • /
    • 2018
  • In recent years, the sales of bottled spring water (BSW) have been drastically increasing in Korea and other countries, which accompanied great interests in conservation and reclamation of natural mineral water (NMW). In this study, management and research activities on NMW in Europe, USA, and Codex Alimentarius were reviewed. In each region, NMW is regulated with its own quality standards that differ from ordinary drinking water, and management actions are strictly implemented to protect water resources and to secure quality of NMW. Many studies on NMW were carried out for monitoring inorganic constituents including major and trace elements in national levels for bottled NMW, groundwater, and tap water in other countries. In Korea, NMW became commercialized in 1995 when BSW was legally approved as a drinking water. To further promote utilization of various types of NMW in Korea, regulations and policies for NMW need to be revised in accordance with international NMW management trends. Further, studies of NMW that compile a comprehensive set of physical and chemical parameters of NMW are also needed to properly understand occurrences, hydrogeological and geochemical processes of NMW, as well as to evaluate its potential use as a natural resource.

SH 2-128, AN H II AND STAR FORMING REGION IN AN UNLIKELY PLACE

  • BOHIGAS JOAQUIN;TAPIA MAURICIO
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.285-288
    • /
    • 2004
  • Near-infrared imaging photometry supplemented by optical spectroscopy and narrow-band imaging of the H II region Sh 2-128 and its environment are presented. This region contains a developed H II region and the neighboring compact H II region S 128N associated with a pair of water maser sources. Midway between these, the core of a CO cloud is located. The principal ionizing source of Sh 2-128 is an 07 star close to its center. A new spectroscopic distance of 9.4 kpc is derived, very similar to the kinematic distance to the nebula. This implies a galactocentric distance of 13.5 kpc and z = 550 pc. The region is optically thin with abundances close to those predicted by galactocentric gradients. The $JHK_s$ images show that S 128N contains several infrared point sources and nebular emission knots with large near-infrared excesses. One of the three red Ks knots coincides with the compact H II region. A few of the infrared-excess objects are close to known mid- and far-infrared emission peaks. Star counts in J and $K_s$ show the presence of a small cluster of B-type stars, mainly associated with S 128N. The $JHK_s$ photometric properties together with the characteristics of the other objects in the vicinity suggest that Sh 2-128 and S 128N constitute a single complex formed from the same molecular cloud, with ages ${\~}10^6$ and < $3 {\times} 10^5$ years respectively. No molecular hydrogen emission was detected at 2.12 ${\mu}m$. The origin of this remote star forming region is an open problem.

Effect of Environmental Factors on the Determination of the Ecotoxicological Threshold Concentration of Cu in Soil Pore Water through Biotic Ligand Model and Species Sensitivity Distribution (Biotic ligand model과 종 민감도 분포를 이용한 토양 공극수 내 Cu의 생태독성학적 허용농도 결정에 미치는 환경인자의 영향)

  • Yu, Gihyeon;An, Jinsung;Jeong, Buyun;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.1
    • /
    • pp.49-58
    • /
    • 2017
  • Biotic ligand model (BLM) and species sensitivity distribution (SSD) were used to determine the site-specific Cu threshold concentration (5% hazardous concentration; HC5) in soil pore water. Model parameters for Cu-BLM were collected for six plants, one collembola, and two earthworms from published literatures. Half maximal effective concentration ($EC_{50}\{Cu^{2+}\}$), expressed as $Cu^{2+}$ activity, was calculated based on activities of major cations and the collected Cu-BLM parameters. The $EC_{50}\{Cu^{2+}\}$ varied from 2 nM to $251{\mu}M$ according to the variation in environmental factors of soil pore water (pH, major cation/anion concentrations) and the type of species. Hazardous activity for 5% (HA5) and HC5 calculated from SSD varied from 0.076 to $0.4{\mu}g/L$ and 0.4 to $83.4{\mu}g/L$, respectively. HA5 and HC5 significantly decreased with the increase in pH in the region with pH less than 7 due to the decrease in competition with $H^+$ and $Cu^{2+}$. In the region with pH more than 7, HC5 increased with the increase in pH due to the formation of complexes of Cu with inorganic ligands. In the presence of dissolved organic carbon (DOC), Cu and DOC form a complex, which decreases $Cu^{2+}$ activity in soil pore water, resulting in up to 292-fold increase in HC5 from 0.48 to $140{\mu}g/L$.

Numerical Study of Land/Channel Flow-Field Optimization in Polymer Electrolyte Fuel Cells (PEFCs) (II) - The Effects of Land/Channel Flow-Field on Temperature and Liquid Saturation Distributions - (고분자전해질형연료전지의 가스 채널 최적화를 위한 수치적 연구 (II) - 가스 채널 치수가 온도와 액체포화 분포에 미치는 영향성 -)

  • Ju, Hyun-Chul;Nam, Jin-Moo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.9
    • /
    • pp.688-698
    • /
    • 2009
  • Using the multi-dimensional, multi-phase, nonisothermal Polymer Electrolyte Fuel Cell (PEFC) model presented in Part I, the effects of land/channel flow-field on temperature and liquid saturation distributions inside PEFCs are investigated in Part II. The focus is placed on exploring the coupled water transport and heat transfer phenomena within the nonisothermal and two-phase zone existing in the diffusion media (DM) of PEFCs. Numerical simulations are performed varying the land and channel widths and simulation results reveal that the water profile and temperature rise inside PEFCs are considerably altered by changing the land and channel widths, which indicates that oxygen supply and heat removal from the channel to the land regions and liquid water removal from the land toward the gas channels are key factors in determining the water and temperature distributions inside PEFCs. In addition, the adverse liquid saturation gradient along the thru-plane direction is predicted near the land regions by the numerical model, which is due to the vapor-phase diffusion driven by the temperature gradient in the nonisothermal two-phase DM where water evaporates at the hotter catalyst layer, diffuses as a vapor form and then condenses on the cooler land region. Therefore, the vapor phase diffusion exacerbates DM flooding near the land region, while it alleviates DM flooding near the gas channel.