• Title/Summary/Keyword: Water Raman

Search Result 133, Processing Time 0.024 seconds

Characterization of nano-structure pyrolytic char for smart and sustainable nanomaterials

  • N. K. Karthikeyan;S. Elavenil
    • Advances in nano research
    • /
    • v.16 no.1
    • /
    • pp.53-69
    • /
    • 2024
  • Advancements in the technology of building materials has led to diverse applications of nanomaterials with the aim to monitor concrete structures. While there are myriad instances of the use of nanoparticles in building materials, the production of smart nano cement-composites is often expensive. Thereupon, this research aims to discover a sustainable nanomaterial from tyre waste using the pyrolysis process as part of the green manufacturing circle. Here, Nano Structure Tyre-Char (NSTC) is introduced as a zero-dimension carbon-based nanoparticle. The NSTC particles were characterized using various standard characterization techniques. Several salient results for the NSTC particles were obtained using microscopic and spectroscopic techniques. The size of the particles as well as that of the agglomerates were reduced significantly using the milling process and the results were validated through a scanning electron microscope. The crystallite size and crystallinity were found to be ~35nm and 10.42%, respectively. The direct bandgap value of 5.93eV and good optical conductivity at 786 nm were obtained from the ultra violet visible spectroscopy measurements. The thermal analysis reveals the presence of a substantial amount of carbon, the rate of maximum weight loss, and the two stages of phase transformation. The FT-Raman confirms the presence of carboxyl groups and a ID/IG ratio of 0.83. Water contact angle around 140° on the surface implies the highly hydrophobic nature of the material and its low surface energy. This characteristic process assists to obtain a sustainable nanomaterial from waste tyres, contributing to the development of a smart building material.

Manufacture of melting temperature controllable modified sulfur (MS) and its application to MS concrete (융점 제어형 개질유황의 개발 및 이를 활용한 콘크리트의 특성 연구)

  • Kim, Jin-Hee;Choi, Jin Sub;Park, No Hyung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.6
    • /
    • pp.261-267
    • /
    • 2014
  • In this study, we manufactured melting temperature controllable modified surfur (MS) and studied the properties of sulfur modified cement concrete (SMC). We investigated the effects of sulfur and pyridine content on melting temperature of MS. The reaction is confirmed by measuring Raman spectrophotoscopy. The SMC was produced at Water (W)/Cement (C) = 45 wt%, Sand (S)/Aggregate (A) = 45 wt% and 5, 10, 15 and 20 % of MS on the basis of conventional portland cement, respectively. And then physical properties such as compressive strength, splitting tensile strength and permeability of SMC were measured. As MS added, permeability was decreased, while strength and spalling properties were improved. To confirm the safety of MS and SMC, pyrolyzed gas chromatography (P-GC) and gas hazard test were conducted. The results showed that MS and SMC were relatively safe at an elevated temperature.

Synergistic Effect of Copper and Cobalt in Cu-Co-O Composite Nanocatalyst for Catalytic Ozonation

  • Dong, Yuming;Wu, Lina;Wang, Guangli;Zhao, Hui;Jiang, Pingping;Feng, Cuiyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3227-3232
    • /
    • 2013
  • A novel Cu-Co-O composite nanocatalyst was designed and prepared for the ozonation of phenol. A synergistic effect of copper and cobalt was observed over the Cu-Co-O composite nanocatalyst, which showed higher activity than either copper or cobalt oxide alone. In addition, the Cu-Co-O composite revealed good activity in a wide initial pH range (4.11-8.05) of water. The fine dispersion of cobalt on the surface of copper oxide boosted the interaction between catalyst and ozone, and the surface Lewis acid sites on the Cu-Co-O composite were determined as the active sites. The Raman spectroscopy also proved that the Cu-Co-O composite was quite sensitive to the ozone. The trivalent cobalt in the Cu-Co-O composite was proposed as the valid state.

Salinity Effect on the Equilibria and Kinetics of the Formation of CO2 and R-134a Gas Hydrates in Seawater

  • Johanna, Lianna;Kim, A Ram;Jeong, Guk;Lee, Jea-Keun;Lee, Tae Yun;Lim, Jun-Heok;Won, Yong Sun
    • Korean Journal of Materials Research
    • /
    • v.26 no.7
    • /
    • pp.382-387
    • /
    • 2016
  • Gas hydrates are crystalline solids in which gas molecules (guests) are trapped in water cavities (hosts) that are composed of hydrogen-bonded water molecules. During the formation of gas hydrates in seawater, the equilibria and kinetics are then affected by salinity. In this study, the effects of salinity on the equilibria of $CO_2$ and R134-a gas hydrates has been investigated by tracing the changes of operating temperature and pressure. Increasing the salinity by 1.75% led to a drop in the equilibrium temperature of about $2^{\circ}C$ for $CO_2$ gas hydrate and $0.38^{\circ}C$ for R-134a gas hydrate at constant equilibrium pressure; in other words, there were rises in the equilibrium pressure of about 1 bar and 0.25 bar at constant equilibrium temperature, respectively. The kinetics of gas hydrate formation have also been investigated by time-resolved in-situ Raman spectroscopy; the results demonstrate that the increase of salinity delayed the formation of both $CO_2$ and R134-a gas hydrates. Therefore, various ions in seawater can play roles of inhibitors for gas hydrate formation in terms of both equilibrium and kinetics.

대기압 플라즈마로 폐 암세포(H460)와 폐 정상세포(L132) 처리시, OH radical density에 따른 Cell 변화 측정

  • Park, Dae-Hun;Kim, Yong-Hui;Sim, Geon-Bo;Baek, Gu-Yeon;Eom, Hwan-Seop;Choe, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.184.2-184.2
    • /
    • 2013
  • 대기압 플라즈마와 생체용액과의 상호작용은 Bio-medical 분야에서 주목 받고 있다. 대기압 플라즈마는 전자온도가 고온 플라즈마 보다 상대적으로 낮기 때문에 생체에 적용하기가 적합하다. 따라서 플라즈마가 세포에 미치는 영향을 관측하기 위해서 대기압 플라즈마를 이용하여 생체용액과의 반응을 살펴보고자 한다. Ar gas를 이용하여 플라즈마를 발생시켜 생체용액 표면을 처리하고 OES (Optical Emission Spectroscopy)을 이용해 방출 선을 조사했다. Ar 기체를 이용한 대기압 플라즈마를 사용하여 다른종류의 용액내의 OH Radical Density를 측정하였다. 용액으로는 DI (deionized) water 와 PBS (1x phosphate buffered saline)를 사용하였다. Ar gas를 200 sccm ($cm^3/min$) 으로 흐르게 하였을 때, DI water의 OH Radical Density 는 $4.33{\times}10^{16}cm^{-3}$ 으로 측정되었으며, 자외선 흡수분광법으로 측정한 완충용액인 PBS의 OH Radical Density 측정값은 $1.87{\times}10^{16}cm^{-3}$ 이다. 이런 특성을 기반으로, PBS 용액내의 H460 (Lung Cancer Cell) 와 L132 (Lung Normal Cell)을 깊이와 시간에 따라 대기압 플라즈마로 처리하여 cell의 변화를 보았다. 실험 각각의 조건은 깊이를 2 mm, 4 mm, 6 mm이며 시간은 10 sec, 30 sec, 60 sec 로 설정하였다. 표면으로부터의 깊이가 2 mm, 4 mm, 6 mm 일때 의 OH Radical Density는 각각 $1.87{\times}10^{16}cm^{-3}$, $0.5{\times}10^{16}cm^{-3}$, 0으로써 용액이 깊어질수록 OH Radical Density가 감소함을 볼 수 있다. OH radical density가 높은 2 mm 에서, 처리한 시간이 길어질수록 Cell 은 영향을 많이 받음을 관찰 할 수 있었다. H460 이 L132 보다 플라즈마에 영향을 많이 받음을 확인하였다. 특성변화를 알아보기 위하여 raman spectroscopy, flow cytometry, electron spin resonance로 측정한다.

  • PDF

Green Synthesis of Multifunctional Carbon Nanodots and Their Applications as a Smart Nanothermometer and Cr(VI) Ions Sensor

  • Li, Lu;Shao, Congying;Wu, Qian;Wang, Yunjian;Liu, Mingzhu
    • Nano
    • /
    • v.13 no.12
    • /
    • pp.1850147.1-1850147.14
    • /
    • 2018
  • In this work, water-soluble and blue-emitting carbon nanodots (CDs) were synthesized from apple peels for the first time via one-step hydrothermal method. The synthetic route is facile, green, economical and viable. The as-prepared CDs were characterized thoroughly by transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman, Fourier transform infrared (FT-IR), X-ray photoelectron (XPS), fluorescence and UV-Vis absorption spectroscopy in terms of their morphology, surface functional groups and optical properties. The results show that these CDs possessed ultrasmall size, good dispersivity, and high tolerance to pH, ionic strength and continuous UV irradiation. Significantly, the CDs had fast and reversible response towards temperature, and the accurate linear relationship between fluorescence intensity and temperature was used to design a novel nanothermometer in a broad temperature range from 5 to $65^{\circ}C$ facilely. In addition, the fluorescence intensity of CDs was observed to be quenched immediately by Cr(VI) ions based on the inner filter effect. A low-cost Cr(VI) ions sensor was proposed employing CDs as fluorescent probe, and it displayed a wide linear range from 0.5 to $200{\mu}M$ with a detection limit of $0.73{\mu}M$. The practicability of the developed Cr(VI) sensor for real water sample assay was also validated with satisfactory recoveries.

The comparative study of pure and pulsed DC plasma sputtering for synthesis of nanocrystalline Carbon thin films

  • Piao, Jin Xiang;Kumar, Manish;Javid, Amjed;Wen, Long;Jin, Su Bong;Han, Jeon Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.320-320
    • /
    • 2016
  • Nanocrystalline Carbon thin films have numerous applications in different areas such as mechanical, biotechnology and optoelectronic devices due to attractive properties like high excellent hardness, low friction coefficient, good chemical inertness, low surface roughness, non-toxic and biocompatibility. In this work, we studied the comparison of pure DC power and pulsed DC power in plasma sputtering process of carbon thin films synthesis. Using a close field unbalanced magnetron sputtering system, films were deposited on glass and Si wafer substrates by varying the power density and pulsed DC frequency variations. The plasma characteristics has been studied using the I-V discharge characteristics and optical emission spectroscopy. The films properties were studied using Raman spectroscopy, Hall effect measurement, contact angle measurement. Through the Raman results, ID/IG ratio was found to be increased by increasing either of DC power density and pulsed DC frequency. Film deposition rate, measured by Alpha step measurement, increased with increasing DC power density and decreased with pulsed DC frequency. The electrical resistivity results show that the resistivity increased with increasing DC power density and pulsed DC frequency. The film surface energy was estimated using the calculated values of contact angle of DI water and di-iodo-methane. Our results exhibit a tailoring of surface energies from 52.69 to $55.42mJ/m^2$ by controlling the plasma parameters.

  • PDF

Plasma Surface Modification of Graphene and Combination with Bacteria Cellulose (Graphene의 플라즈마 표면 개질과 박테리아 셀룰로오스와의 결합성 검토)

  • Yim, Eun-Chae;Kim, Seong-Jun;Oh, Il-Kwon;Kee, Chang-Doo
    • Korean Chemical Engineering Research
    • /
    • v.51 no.3
    • /
    • pp.388-393
    • /
    • 2013
  • The study was focused to evaluate the possibility for combination membrane of bacterial cellulose (BC) and graphene with high electrical properties. BC with natural polymer matrix was known to have strong physical strength. For the combination of graphene with BC, the surface of graphene was modified with oxygen plasma by changing strength and time of radio waves in room temperature. Water contact angle of modified graphene grew smaller from $130^{\circ}$ to $12^{\circ}$. XPS analysis showed that oxygen content after treatment increased from 2.99 to 10.98%. Damage degree of graphene was examined from $I_D/I_G$ ratio of Raman analysis. $I_D/I_G$ ratio of non-treated graphene (NTG) was 0.11, and 0.36 to 0.43 in plasma treated graphene (PTG), increasing structural defects of PTG. XRD analysis of PTG membrane with BC was $2{\theta}$ same to BC only, indicating chemically combined membrane. In FT-IR analysis, 1,000 to 1,300 $cm^{-1}$ (C=O) peak indicating oxygen radicals in PTG membrane had formed was larger than NTG membrane. The results suggest that BC as an alternation of plastic material for graphene combination has a possibility in some degree on the part like transparent conductive films.

Optical Diagnostics of Nanopowder Processed in Liquid Plasmas

  • Bratescu, M.A.;Saito, N.;Takai, O.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.17-18
    • /
    • 2011
  • Plasma in liquid phase has attracted great attention in the last few years by the wide domain of applications in material processing, decomposition of organic and inorganic chemical compounds and sterilization of water. The plasma in liquid is characterized by three main regions which interact each - other during the plasma operation: the liquid phase, which supply the plasma gas phase with various chemical compounds and ions, the plasma in the gas phase at atmospheric pressure and the interface between these two regions. The most complex region, but extremely interesting from the fundamental, chemical and physical processes which occur here, is the boundary between the liquid phase and the plasma gas phase. In our laboratory, plasma in liquid which behaves as a glow discharge type, is generated by using a bipolar pulsed power supply, with variable pulse width, in the range of 0.5~10 ${\mu}s$ and 10 to 30 kHz repetition rate. Plasma in water and other different solutions was characterized by electrical and optical measurements. Strong emissions of OH and H radicals dominate the optical spectra. Generally water with 500 ${\mu}S/cm$ conductivity has a breakdown voltage around 2 kV, depending on the pulse width and the repetition rate of the power supply. The characteristics of the plasma initiated in ultrapure water between pairs of different materials used for electrodes (W and Ta) were investigated by the time-resolved optical emission and the broad-band absorption spectroscopy. The deexcitation processes of the reactive species formed in the water plasma depend on the electrode material, but have been independent on the polarity of the applied voltage pulses. Recently, Coherent anti-Stokes Raman Spectroscopy method was employed to investigate the chemistry in the liquid phase and at the interface between the gas and the liquid phases of the solution plasma system. The use of the solution plasma allows rapid fabrication of the metal nanoparticles without being necessary the addition of different reducing agents, because plasma in the liquid phase provides a reaction field with a highly excited energy radicals. We successfully synthesized gold nanoparticles using a glow discharge in aqueous solution. Nanoparticles with an average size of less than 10 nm were obtained using chlorauric acid solutions as the metal source. Carbon/Pt hybrid nanostructures have been obtained by treating carbon balls, synthesized in a CVD chamber, with hexachloro- platinum acid in a solution plasma system. The solution plasma was successfully used to remove the template remained after the mesoporous silica synthesis. Surface functionalization of the carbon structures and the silica surface with different chemical groups and nanoparticles, was also performed by processing these materials in the liquid plasma.

  • PDF

Mineralogical Studies of the Tourmaline for Medicinal Applications by Production Localities (본초 광물로서의 활용을 위한 산지별 전기석의 광물학적 연구)

  • Jie, Yan;Kim, Seon-ok;Park, Hee Yul;Park, Maeng-Eon
    • Economic and Environmental Geology
    • /
    • v.51 no.4
    • /
    • pp.345-358
    • /
    • 2018
  • In this study, we have performed electron probe micro analyzer (EPMA), X-ray differaction (XRD), inductively coupled plasma spectroscopy (ICP), Fourier transform Raman spectroscopy (FT-Raman), far-infrared (FIR), nuclear magnetic resonance (NMR), and pH-DO Analyses for characterizing medicinal mineralogy aspect of the black tourmaline (Shantung, china), black and pink tourmaline (Minas Geraris, Brazil), black touemaline (Daeyu mine, Korea). In addition, heating effects of the tourmaline sauna as well as the effects of tourmaline powder-added soap on skin troubles have been investigated. It has been revealed that chemical composition of the tourmaline is either high in Fe-, Al-, B-rich types. Ratio of the K-Ca, Na-K, and Fe-B reflects the component change property of solid solution. $CaO/CaO+Na_2O$ and MgO/FeO+MgO ratio show high positive correlation. When tourmaline reacts with distilled water, extended reaction time DO values approximately decrease and it stabilizes at DO = 10. Otherwise, pH values increase until 6 hours and it stabilizes at pH = 8 after 24 hours. Distilled water changes to alkaline when it reacts with tourmaline powder and particles. Tourmaline showed lower absorption spectrum strength and transmittance at short wave, where absorption spectrum wavelength and strength were determined by the content of the composition elements and characteristics of crystallography. Increase of the Fe content has been confirmed to be the cause for the reduction of irradiation. For the chemical composition and spectral property of the tourmaline particle samples, it has been found that Si and Fe contents show positive correlation with Far-Infrared irradiation, while Al and Mg contents show negative correlation. For tourmaline powder, it has been confirmed that $^{17}O-NMR$ FWHM (full width at half maximum) decreases when reacts with distilled water. Tourmaline sauna (approximately $100^{\circ}C$) was found to increase $0.5-1.5^{\circ}C$ of body temperature, average of 12 heartbeat, and 10mg Hg of blood pressure. Tourmaline soap had very good aesthetic effect to skin and was confirmed to have above the average improvements to skin troubles (e.g., allergy or atopy).