• Title/Summary/Keyword: Water Quality variation

Search Result 704, Processing Time 0.024 seconds

The Effect of Stationary Fin and Buoyancy Devices on Dynamic Pitching of the Tracked Vehicle (궤도차량의 동적 피칭에 미치는 고정식 핀(Fin) 및 부력장치의 영향)

  • Park, KyungChul;Kim, HyeongHyeon;Kwon, JoonSik;Kim, KyungRo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.220-225
    • /
    • 2015
  • In this study, the effect of stationary fin and buoyancy devices on dynamic pithing of the tracked vehicle was investigated. For this work, the stationary fin and buoyancy devices were installed in front of body and then pitching variation was measured when rapidly reducing the vehicle speed in water operation. According to the results of measuring the freeboard at each case, when only fin was installed, the effect on freeboard of tracked vehicle in water was negligible. However, when buoyancy devices were installed, front freeboard was approximately increased by about 20~25 mm and rear freeboard was decreased by about 10~15 mm per each addition of 100 kg buoyancy device. Based on the calculation result of pitching decrease rates, it was found that the pitching variation was decreased approximately 12.3 % by fin installation and approximately 2 % by installation of each 100 kg of buoyancy device. The case in which only fin installation was made showed the best efficiency in decreasing pitching variation of the tracked vehicle in water compared to the other cases.

Evaluation of Pollutants Removal for Treated Wastewater Effluent and River Water by Meandering Constructed Wetland System (하수처리수와 하천수를 대상으로 한 생태적 수질정화 비오톱 시스템의 오염물질 제거에 대한 수질정화 평가)

  • Lee, Sang-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.1
    • /
    • pp.131-139
    • /
    • 2012
  • Field experiment was performed from June 2010 to July 2011 to evaluate pollutants removal efficiency in the constructed wetland system for the treated wastewater and the river water. The wetland systems were constructed near Gyungan river. Two different systems with meandering shape were compared for seasonal base and operational period base. Several kinds of aquaculture are planted through the corridor of wetland system. Average removal rate of BOD, T-N and T-P for A system were 15.8%, 14.8% and 26.5%, respectively. Average removal rate of BOD, T-N and T-P for C system were 23.5%, 27.8% and 10.6%, respectively. The effluent from two wetland systems often exceeded effluent water quality standards for wastewater influent, however effluent water quality standards for river water. However, the wetland system can be useful to treat polluted river water and effluent from wastewater plant. Removal rate of pollutants in seasonal variation was the highest in summer for BOD and T-N, however the removal rates of T-P were higher in spring and autumn than in summer.

Influence of River Discharge Fluctuation and Tributary Mixing on Water Quality of Geum River, Korea (유량변화와 지류유입에 따른 금강의 수질 변화)

  • Shim, Moo Joon;Lee, Soo Hyung
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.3
    • /
    • pp.313-318
    • /
    • 2015
  • To study the influence of changes in river discharge on water quality of the main stem of the Geum River, we investigated variation of inflow load from tributaries with river discharge. We also studied the mixing behavior of pollutants during mixing of waters of the main stem and Gap Stream. For this study, we collected water quality data such as suspended solids (SS), biochemical oxygen demand (BOD), chemical oxygen demand (COD), total organic carbon (TOC), total nitrogen (TN) and total phosphorus (TP) representing pre-monsoon, monsoon, and post-monsoon events of 2013 from a website of Water Information System. Based on inflow load, the Gap and Miho streams may be ones of tributaries which may largely influence water quality of main stem in upper river region. The Suksung and Nonsan Streams seemed to further affect water quality downstream. Results of modified EMMA indicated SS and TP may have another source(besides Gap Stream) at pre-monsoon, monsoon, and post-monsoon period. In contrast, TN and organic matter (BOD, COD, TOC) were conservative at pre-monsoon and post-monsoon. However, when river discharge increased, these pollutants may also came from unspecified non-point sources. Therefore, we need to attempt to find non-point sources for the pollutants in the main channel of upper Geum River region.

The Evaluation of Water Quality in the Mankyung River using Multivariate Analysis (다변량해석기법을 이용한 수계의 수질평가)

  • O, Yeon Chan;Lee, Nam Do;Kim, Jong Gu
    • Journal of Environmental Science International
    • /
    • v.13 no.3
    • /
    • pp.233-244
    • /
    • 2004
  • This study was conducted to evaluate water quality in the Mankyung River using multivariate analysis. The analysis data which was surveyed from January 1996 to December 2002 in Mankyung river was aquired by the ministry of environment. Twelve water quality parameters were determined on each survey. The results were summarized as follow; Water quality in the Mankyung River could be explained up to 74.90% by four factors which were included in loading of organic matter and nutrients by the tributaries(43.28%), seasonal variation(10.40%), loading of pathogenic bacteria by domestic sewage of Gapcheon (12.41%) and internal metabolism in river(8.81%). The result of cluster analysis by station was classified into three group that has different water quality characteristics. Especially, Iksan river was appeared to considerable water quality characteristics against other station. In monthly cluster analysis, three group was classified by seasonal characteristics. Also, in yearly cluster analysis, three group was classified. It is necessary to control the pollutant loadings by domestic sewage and livestock waste for water quality management of Mankyung river.

Seasonal Variation of Surface Water Quality in a Catchment Contaminated by $NO_3-N$ (질산성 질소로 오염된 소유역 하천 수질의 계절 변화)

  • Kim Youn-Tae;Woo Nam-Chil;Lee Kwang-Sik;Song Yun-Goo
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.2
    • /
    • pp.20-27
    • /
    • 2005
  • The seasonal variation of water quality was studied in the Hwabongcheon. It runs though a small catchment where shallow groundwater was contaminated with $NO_3-N$ by intensive livestock facilities. A direct inflow of animal waste and incoming of contaminated groundwater affected its water quality. In the dry season, an important factor of water quality in the Hwabongcheon was direct inflow of animal waste. In the wet season, concentrations of $NO_3-N$ in the Hwabongcheon were elevated in spite of being diluted by precipitation. It could be explained by the effect of increased incoming of contaminated groundwater and showed by oxygen and hydrogen isotope values. $NO_3-N$ concentration in the Cheongmicheon was lower than that in the Hwabongcheon, so it increased next a junction. This effect was intense in wet season because $NO_3-N$ concentration in the Hwabongcheon was high.

Assessment and spatial variation of water quality using statistical techniques: Case study of Nakdong river, Korea

  • Kim, Shin
    • Membrane and Water Treatment
    • /
    • v.13 no.5
    • /
    • pp.245-257
    • /
    • 2022
  • Water quality characteristics and their spatial variations in the Nakdong River were statistically analyzed by multivariate techniques including correlation analysis, CA, and FA/PCA based on water quality parameters for 17 sites over 2017-2019, yielding PI values for primary factors. Site 10 indicated the highest parameter concentrations, and results of pearson's correlation analysis suggest that non-biodegradable organic matter had been distributed on the site. Five clusters were identified in order of descending pollution levels: I (Ib > Ia) > II (IIa > IIb) > III. Spatial variations started from sub-cluster Ib in which Daegu city and Geumho-river are joined. T-P, PO4-P, SS, COD, and TOC corresponded to VF 1 and 2, which were found to be principal components with strong influence on water quality. Sub-cluster Ib was strongly influenced by NO3-N and T-N compared to other clusters. According to the PIs, water quality pollution deteriorated due to non-biodegradable organic matter, nitrogen- and phosphorus-based nutrient salts in the middle and lower reaches, illustrating worsening water pollution due to inflows of anthropogenic sources on the Geumho-river, i.e., sewage and wastewater, discharged from Site 10, at which there is a concentration of urban, agricultural, and industrial areas.

Runoff Pollutant Load of Agricultural Watershed (농업유역에서의 유출 오염부하량 조사)

  • Son, Jae-Gwon;Choi, Jin-Kyu
    • Journal of Korean Society of Rural Planning
    • /
    • v.9 no.1 s.18
    • /
    • pp.77-83
    • /
    • 2003
  • This study was carried out to provide the basic information for the water quality management of the Sumjin River Basin. The Chooryeongchon stream watershed was selected and the parameters representing water quality were investigated from May 1999 to September 2002, periodically. Yearly mean runoff ratio to the rainfall amount of the watershed was analysed as $26.6{\sim}58.8%$. Temporal variation of water quality constituents such as water temperature, pH, EC, total nitrogen, total phosphorus were analysed. The result showed that pH ranged $5.7{\sim}7.7$, EC $54{\sim}167\;{\mu}S/cm$, COD $0.8{\sim}18.1\;mg/L$, respectively. Total-N and total-P concentration ranged from 0.89 to 5.19 mg/L and from 0.0004 to 0.030 mg/L, respectively. The relationships between runoff and mass load were derived and showed high linear relationships.

Application of Web-based Load Duration Curve System to TMDL Watersheds for Evaluation of Water Quality and Pollutant Loads (수질오염총량제도 유역의 수질 및 부하량 평가를 위한 웹기반 LDC 시스템의 적용)

  • Kang, Hyunwoo;Ryu, Jichul;Shin, Minhwan;Choi, Joongdae;Choi, Jaewan;Shin, Dong Seok;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.5
    • /
    • pp.689-698
    • /
    • 2011
  • In South Korea, Total Maximum Daily Load (TMDL) has been enforced since 2004 to restore and manage water quality in the watersheds. However, the appraisal of TMDL in South Korea has lots of weaknesses to establish the plan for recovery of water quality because it just evaluates the target water quality during the particular flow duration interval. In the United States, Load Duration Curve (LDC) method bas been widely used in the TMDL to evaluate the water quality and pollutant loads considering variation of stream flow. In a recent study, web-based Load Duration Curve system was developed to create the LDC automatically and provide the convenience of use. In this study, web-based Load Duration Curve system was applied in the Gapyeongcheon watershed using the daily flow and 8-day interval water quality data, and Q-L Rating Curve was used to evaluate the water quality and pollutant load in the watershed, also. As a result of study, water quality and pollutant load in Gapyeongcheon watershed were met with water quality standard and allocated load in the all flow durations. Web-based Load Duration Curve system could be applied to the appraisal of South Korean TMDL because it can be used to judge the impaired flow duration and build up the plan of load reduction, and it could enhance the publicity. But, web-based Load Duration Curve system should be enhanced through addition of load assessment tools such as Q-L rating curve to evaluate water quality and pollutant load objectively.

Studies on the Water Quality of the Han River Water, and Water Quality Standards (한강의 수질과 수질규준에 관한 고찰)

  • Choe, Sang
    • 한국해양학회지
    • /
    • v.3 no.2
    • /
    • pp.47-54
    • /
    • 1968
  • Monthly mean values for EDTA hardness in the Han River water were determined for March 1966 through May 1967. The hardness was retained a range of 22-59 mg/L the maximum value of 59 mg/L was approached in the months of mid-winter, indicating a seasonal variation. The annual ranges of Ca and Mg were 3.7-9.1 mg/L, 1.5-10.4 mg/L, respectively. The annual range of Mg:Ca ratio was 0.18-2.60. And the hardness correlated closely with Mg volume. In Korea, fortunately, most river waters are not yet suffering from damaging pollution. We must try to establish our water quality criteria based on scientific data, and make research recommendations for the following water uses; public water supplies, aquatic life and wildlife, industry, recreation and aesthetics.

  • PDF

Water Quality Variation and Corrosion Index Characteristics of Underground Reservoir in Apartment (공동주택 지하저수조의 수질변화 및 부식성 특성)

  • JunYoung, Jang;JooWon, Kim;YuHoon, Hwang;KiPal, Kim;HyunSang, Shin;ByungRan, Lim
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.6
    • /
    • pp.275-281
    • /
    • 2022
  • To maintain water quality after water treatment, monitoring whether the quality of treated tap water quality changes is essential. However, current investigations are insufficient to prevent secondary contamination in drinking water supply systems. This study investigated Gyeonggi's e apartment where a red water problem occurred and monitored the water quality and corrosiveness of the overall water supply system to the apartment from June 2021 to April 2022. In a comparison of drinking water quality after water treatment and the influent of the reservoir, turbidity and heavy metal concentrations were increased and residual chlorine was decreased due to increases in temperature. Correlation analysis and principal component analysis (PCA) indicated that a low level of residual chlorine may cause the abscission of Mn2+ and Fe2+ through microorganism activation, which also causes a high level of turbidity. The corrosion index (LI) in the influent of the reservoir tank was increased due to Ca2+ and temperature. These results indicate that the corrosiveness of drinking water and the deterioration of drinking water quality were mainly increased between the drinking water treatment plant and the reservoir tank's influent. The findings provide clear evidence that it is essential to manage water supply systems and reservoir tanks to prevent the secondary contamination of drinking water.