• Title/Summary/Keyword: Water Quality Modeling

Search Result 444, Processing Time 0.027 seconds

Vegetation classification based on remote sensing data for river management (하천 관리를 위한 원격탐사 자료 기반 식생 분류 기법)

  • Lee, Chanjoo;Rogers, Christine;Geerling, Gertjan;Pennin, Ellis
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.6-7
    • /
    • 2021
  • Vegetation development in rivers is one of the important issues not only in academic fields such as geomorphology, ecology, hydraulics, etc., but also in river management practices. The problem of river vegetation is directly connected to the harmony of conflicting values of flood management and ecosystem conservation. In Korea, since the 2000s, the issue of river vegetation and land formation has been continuously raised under various conditions, such as the regulating rivers downstream of the dams, the small eutrophicated tributary rivers, and the floodplain sites for the four major river projects. In this background, this study proposes a method for classifying the distribution of vegetation in rivers based on remote sensing data, and presents the results of applying this to the Naeseong Stream. The Naeseong Stream is a representative example of the river landscape that has changed due to vegetation development from 2014 to the latest. The remote sensing data used in the study are images of Sentinel 1 and 2 satellites, which is operated by the European Aerospace Administration (ESA), and provided by Google Earth Engine. For the ground truth, manually classified dataset on the surface of the Naeseong Stream in 2016 were used, where the area is divided into eight types including water, sand and herbaceous and woody vegetation. The classification method used a random forest classification technique, one of the machine learning algorithms. 1,000 samples were extracted from 10 pre-selected polygon regions, each half of them were used as training and verification data. The accuracy based on the verification data was found to be 82~85%. The model established through training was also applied to images from 2016 to 2020, and the process of changes in vegetation zones according to the year was presented. The technical limitations and improvement measures of this paper were considered. By providing quantitative information of the vegetation distribution, this technique is expected to be useful in practical management of vegetation such as thinning and rejuvenation of river vegetation as well as technical fields such as flood level calculation and flow-vegetation coupled modeling in rivers.

  • PDF

Transportation Modeling of Conservative Pollutant in a River with Weirs - The Nakdong River Case (수중보를 고려한 하천에서 보존성 오염물질의 이송특성 분석 - 낙동강을 중심으로)

  • Lee, Jungwoo;Bae, Sunim;Lee, Dong-Ryul;Seo, Dongil
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.12
    • /
    • pp.821-827
    • /
    • 2014
  • The 4major river project has caused changes in flow and water quality patterns in major rivers in Korea including the Nakdong River where several toxicant release accidents have had occurred. Three dimensional hydrodynamic model, the Environmental Fluid Dynamics Code (EFDC), was applied to evaluate the effect of geomorphological change of the river on the advection and dispersion patterns of a conservative toxic pollutant. A hypothetical scenario was developed using historical data by assuming a toxic release from an upstream location. If there is a toxic release at the Gumi Industrial Complex, the toxic material would be detected after 2.22 and 9.83 days at Chilgok and Gangjung weir, respectively, in the new river system. It was estimated that they took at least 12 times longer than those with the river conditions before the project. Effect of relocation of intake towers for Daegu Metro City to upstream of Gumi City was also evaluated using the developed modeling system. It was observed that hydraulic residence time would be increased due to decreased flow rate and thus due to lowered water level. However, peak concentration differences were found to be about 2% lower in both places due to increased dispersion effect after the relocation.

Exclusive correlation analysis for algae and environmental factors in weirs of four major rivers in South Korea (4대강 주요지점에서의 조류 발생인자의 배타적 상관성분석에 대한 연구)

  • Lee, Eun Hyung;Kim, Yeonhwa;Kim, Kyunghyun;Kim, Sanghyun
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.2
    • /
    • pp.155-164
    • /
    • 2016
  • Algal blooms not only destroy fish habitats but also diminish biological diversity of ecosystem which results into water quality deterioration of 4 major rivers in South Korea. The relationship between algal bloom and environmental factors had been analyzed through the cross-correlation function between concentration of chlorophyll a and other environmental factors. However, time series of cross-correlations can be affected by the stochastic structure such auto-correlated feature of other controllers. In order to remove external effect in the correlation analysis, the pre-whitening procedure was implemented into the cross correlation analysis. The modeling process is consisted of a series of procedure (e.g., model identification, parameter estimation, and diagnostic checking of selected models). This study provides the exclusive correlation relationship between algae concentration and other environmental factors. The difference between the conventional correlation using raw data and that of pre-whitened series was discussed. The process implemented in this paper is useful not only to identify exclusive environmental variables to model Chl-a concentration but also in further extensive application to configure causality in the environment.

Conceptual Geochemical Modelling of Long-term Hyperalkaline Groundwater and Rock Interaction (지구화학 모델을 이용한 장기간의 강알칼리성 지하수-암석의 반응 개념 모델링)

  • Choi, Byoung-Young;Yoo, Si-Won;Chang, Kwang-Soo;Kim, Geon-Young;Koh, Yong-Kwon;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.4
    • /
    • pp.273-281
    • /
    • 2007
  • Hyperalkaline groundwater formed by groundwater-cement components and its reaction with bedrock in a nuclear waste repository were simulated by geochemical modeling. The result of groundwater-cement components reaction showed that the pH of water was 13.3 and the precipitated minerals were Brucite, Katoite, Calcium Silicate Hydrate(CSH1.1), Ettringite, Hematite, and Portlandite. The result of interaction between such minerals and groundwater sampled in Gyeongju area also showed that the pH of groundwater reached 12.4. Interaction between such hyperalkaline groundwater and granite was simulated by kinetic model during $10^3$ years. This result showed that the final pH of groundwater reached 11.2 and the variation of pH was controlled by dissolution/precipitation of silicate and CSH minerals. Groundwater quality was also determined by dissolution/precipitation of silicate, CSH, oxide minerals. Our results show that geochemical modeling of long-term hyperalkaline groundwater and rock interaction can contribute to the safety assessment of engineered barrier by predicting geochemical condition in repository site.

  • PDF

Water Digital Twin for High-tech Electronics Industrial Wastewater Treatment System (I): e-ASM Development and Digital Simulation Implementation (첨단 전자산업 폐수처리시설의 Water Digital Twin(I): e-ASM 모델 개발과 Digital Simulation 구현)

  • Shim, Yerim;Lee, Nahui;Jeong, Chanhyeok;Heo, SungKu;Kim, SangYoon;Nam, KiJeon;Yoo, ChangKyoo
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.63-78
    • /
    • 2022
  • Electronics industrial wastewater treatment facilities release organic wastewaters containing high concentrations of organic pollutants and more than 20 toxic non-biodegradable pollutants. One of the major challenges of the fourth industrial revolution era for the electronics industry is how to treat electronics industrial wastewater efficiently. Therefore, it is necessary to develop an electronics industrial wastewater modeling technique that can evaluate the removal efficiency of organic pollutants, such as chemical oxygen demand (COD), total nitrogen (TN), total phosphorous (TP), and tetramethylammonium hydroxide (TMAH), by digital twinning an electronics industrial organic wastewater treatment facility in a cyber physical system (CPS). In this study, an electronics industrial wastewater activated sludge model (e-ASM) was developed based on the theoretical reaction rates for the removal mechanisms of electronics industrial wastewater considering the growth and decay of micro-organisms. The developed e-ASM can model complex biological removal mechanisms, such as the inhibition of nitrification micro-organisms by non-biodegradable organic pollutants including TMAH, as well as the oxidation, nitrification, and denitrification processes. The proposed e-ASM can be implemented as a Water Digital Twin for real electronics industrial wastewater treatment systems and be utilized for process modeling, effluent quality prediction, process selection, and design efficiency across varying influent characteristics on a CPS.

Analysis of Seawater Intake System using the RNG k-𝜖 Algorithm (RNG k-𝜖 알고리즘을 이용한 해수취수시스템 분석)

  • Kim, Ji-Ho;Kim, Tae-Won;Lee, Seung-Oh;Park, Young-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6447-6454
    • /
    • 2013
  • Seawater intake systems have significant problems due to seawater pollution, suspended solids, unstable intake and maintenance etc. An underground type seawater intake system was newly developed to overcome the existing weaknesses and was facilitated in Gyukpo port. In this study, to check the performance of the new system, the samples for water quality and the 3-D numerical modeling test were conducted. The five times test included the COD, total nitrogen, total phosphorus, pH, and suspended solid for the intake system. The analyses show that the COD, total nitrogen, total phosphorus, PH showedminor changes before and after. On the other hand, the change in suspended solids was significant and water was purified below 5 mg/l, first level fisheries water, after. The numerical model adopted the RNG $k-{\epsilon}$ algorithm and the CFX model based on the finite volume method. The porosity algorithm was used to reproduce filtered-sand, outer diameter, and thickness. The numerical results showed that the double pipe is advantageous in that it provides a uniform pressure between the inner and outer pipe for the flow to be stable. In addition, the use of multiple intake pipes did not interfere with the discharge reduction of 0.98 at the both intake pipes compared with the central intake pipe.

Analysis of SWAT Simulated Errors with the Use of MOE Land Cover Data (환경부 토지피복도 사용여부에 따른 예측 SWAT 오류 평가)

  • Heo, Sung-Gu;Kim, Nam-Won;Yoo, Dong-Sun;Kim, Ki-Sung;Lim, Kyoung-Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.194-198
    • /
    • 2008
  • Significant soil erosion and water quality degradation issues are occurring at highland agricultural areas of Kangwon province because of agronomic and topographical specialities of the region. Thus spatial and temporal modeling techniques are often utilized to analyze soil erosion and sediment behaviors at watershed scale. The Soil and Water Assessment Tool (SWAT) model is one of the watershed scale models that have been widely used for these ends in Korea. In most cases, the SWAT users tend to use the readily available input dataset, such as the Ministry of Environment (MOE) land cover data ignoring temporal and spatial changes in land cover. Spatial and temporal resolutions of the MOE land cover data are not good enough to reflect field condition for accurate assesment of soil erosion and sediment behaviors. Especially accelerated soil erosion is occurring from agricultural fields, which is sometimes not possible to identify with low-resolution MOD land cover data. Thus new land cover data is prepared with cadastral map and high spatial resolution images of the Doam-dam watershed. The SWAT model was calibrated and validated with this land cover data. The EI values were 0.79 and 0.85 for streamflow calibration and validation, respectively. The EI were 0.79 and 0.86 for sediment calibration and validation, respectively. These EI values were greater than those with MOE land cover data. With newly prepared land cover dataset for the Doam-dam watershed, the SWAT model better predicts hydrologic and sediment behaviors. The number of HRUs with new land cover data increased by 70.2% compared with that with the MOE land cover, indicating better representation of small-sized agricultural field boundaries. The SWAT estimated annual average sediment yield with the MOE land cover data was 61.8 ton/ha/year for the Doam-dam watershed, while 36.2 ton/ha/year (70.7% difference) of annual sediment yield with new land cover data. Especially the most significant difference in estimated sediment yield was 548.0% for the subwatershed #2 (165.9 ton/ha/year with the MOE land cover data and 25.6 ton/ha/year with new land cover data developed in this study). The results obtained in this study implies that the use of MOE land cover data in SWAT sediment simulation for the Doam-dam watershed could results in 70.7% differences in overall sediment estimation and incorrect identification of sediment hot spot areas (such as subwatershed #2) for effective sediment management. Therefore it is recommended that one needs to carefully validate land cover for the study watershed for accurate hydrologic and sediment simulation with the SWAT model.

  • PDF

Univariate Analysis of Soil Moisture Time Series for a Hillslope Located in the KoFlux Gwangneung Supersite (광릉수목원 내 산지사면에서의 토양수분 시계열 자료의 단변량 분석)

  • Son, Mi-Na;Kim, Sang-Hyun;Kim, Do-Hoon;Lee, Dong-Ho;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.2
    • /
    • pp.88-99
    • /
    • 2007
  • Soil moisture is one of the essential components in determining surface hydrological processes such as infiltration, surface runoff as well as meteorological, ecological and water quality responses at watershed scale. This paper discusses soil moisture transfer processes measured at hillslope scale in the Gwangneung forest catchment to understand and provide the basis of stochastic structures of soil moisture variation. Measured soil moisture series were modelled based upon the developed univariate model platform. The modeling consists of a series of procedures: pre-treatment of data, model structure investigation, selection of candidate models, parameter estimation and diagnostic checking. The spatial distribution of model is associated with topographic characteristics of the hillslope. The upslope area computed by the multiple flow direction algorithm and the local slope are found to be effective parameters to explain the distribution of the model structure. This study enables us to identify the key factors affecting the soil moisture distribution and to ultimately construct a realistic soil moisture map in a complex landscape such as the Gwangneung Supersite.

Application of Habitat Suitability Models for Assessing Climate Change Effects on Fish Distribution (어류 분포에 미치는 기후변화 영향 평가를 위한 서식적합성 모형 적용)

  • Shim, Taeyong;Bae, Eunhye;Jung, Jinho
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.2
    • /
    • pp.134-142
    • /
    • 2016
  • Temperature increase and precipitation changes caused by change alter aquatic environments including water quantity and quality that eventually affects the habitat of aquatic organisms. Such changes in habitat lead to changes in habitat suitability of the organisms, which eventually determines species distribution. Therefore, conventional habitat suitability models were investigated to evaluate habitat suitability changes of freshwater fish cause by change. Habitat suitability models can be divided into habitat-hydraulic (PHABSIM, CCHE2D, CASiMiR, RHABSIM, RHYHABSIM, and River2D) and habitat-physiologic (CLIMEX) models. Habitat-hydraulic models use hydraulic variables (velocity, depth, substrate) to assess habitat suitability, but lack the ability to evaluate the effect of water quality, including temperature. On the contrary, CLIMEX evaluates the physiological response against climatic variables, but lacks the ability to interpret the effects of physical habitat (hydraulic variables). A new concept of ecological habitat suitability modeling (EHSM) is proposed to overcome such limitations by combining the habitat-hydraulic model (PHABSIM) and the habitat-physiologic model (CLIMEX), which is able to evaluate the effect of more environmental variables than each conventional model. This model is expected to predict fish habitat suitability according to climate change more accurately.

Modeling of Dual Head Gantry Radiotherapy System with Monte Carlo Simulation (듀얼 헤드 갠트리 방사선치료 시스템 설계를 위한 몬테칼로 시뮬레이션 연구)

  • Park, Seungwoo
    • Journal of radiological science and technology
    • /
    • v.40 no.4
    • /
    • pp.627-632
    • /
    • 2017
  • In order to design a dual-head gantry radiotherapy system, the single head of LINAC was modeled using GATE as a preliminary study. The LINAC head was designed with VARIAN manufacturer's information. 6 MV photons were generated from the head and the photons w irradiated to a water phantom for beam evaluation. GATE simulation was segmented by two stages, the one was to generate X-ray spectrum and the other one was for irradiation X-ray to the water phantom. The quantitative results were described in Percentage depth dose and beam profile. Two field size conditions were employed as $5{\times}5$ and $10{\times}10cm^2$. After beam quality was verified, dual heads gantry radiotherapy system were simulated and they was compared to the single head of LINAC system in terms of dose deposition with in the phantom. The simulated LINAC head showed acceptable beam quality result for radiotherapy. The efficiency was calculated that deposited dose from dual heads was divided by the dose from single head. At all conditions, dual heads showed higher treatment efficiency. Efficiency was increased about 40 to 60%. Form the result, The dual head gantry system of new LINAC system will contribute to the practical radiotherapy of tumor and to reduce treatment time.