DOI QR코드

DOI QR Code

Modeling of Dual Head Gantry Radiotherapy System with Monte Carlo Simulation

듀얼 헤드 갠트리 방사선치료 시스템 설계를 위한 몬테칼로 시뮬레이션 연구

  • Park, Seungwoo (Division of Medical Radiation equipment, Korea Institute of Radiological and Medical Sciences)
  • 박승우 (한국원자력의학원 방사선기기부)
  • Received : 2017.12.11
  • Accepted : 2017.12.24
  • Published : 2017.12.31

Abstract

In order to design a dual-head gantry radiotherapy system, the single head of LINAC was modeled using GATE as a preliminary study. The LINAC head was designed with VARIAN manufacturer's information. 6 MV photons were generated from the head and the photons w irradiated to a water phantom for beam evaluation. GATE simulation was segmented by two stages, the one was to generate X-ray spectrum and the other one was for irradiation X-ray to the water phantom. The quantitative results were described in Percentage depth dose and beam profile. Two field size conditions were employed as $5{\times}5$ and $10{\times}10cm^2$. After beam quality was verified, dual heads gantry radiotherapy system were simulated and they was compared to the single head of LINAC system in terms of dose deposition with in the phantom. The simulated LINAC head showed acceptable beam quality result for radiotherapy. The efficiency was calculated that deposited dose from dual heads was divided by the dose from single head. At all conditions, dual heads showed higher treatment efficiency. Efficiency was increased about 40 to 60%. Form the result, The dual head gantry system of new LINAC system will contribute to the practical radiotherapy of tumor and to reduce treatment time.

듀얼 헤드 갠트리(dual-head) 갠트리 방사선치료 시스템을 설계하기 위해 LINAC의 단일 헤드는 GATE를 예비 연구로 사용하여 모델링되었다. LINAC 헤드는 임상에서 사용되고 있는 VARIAN사를 대상으로 모델링되었다. LINAC 헤드에서 생성된 6MV의 광자선을 물 팬텀에 조사하여 빔의 특성을 평가하였다. GATE 시뮬레이션은 X- 선 스펙트럼을 생성한 후 물 팬텀에 광자선을 조사하였다. 결과로는 백분율 깊이 선량 과 빔의 프로파일을 평가하였으며, $5{\times}5$$10{\times}10cm^2$에서 수행하였다. 빔 품질이 검증 된 후 듀얼 헤드 갠트리(dual head gantry) 방사선치료 시스템을 시뮬레이션 한 후 팬텀(phantom)을 이용한 선량 분포 측면에서 LINAC 시스템의 단일 헤드와 비교하였다. 듀얼 헤드 갠트리 방사선치료 시스템은 단일 헤드 방사선치료 시스템에 비해 방사선치료의 효율 면에서 40~60% 높은 것을 확인할 수 있었으며, 듀얼 헤드 방사선치료 시스템은 방사선치료 및 치료시간을 줄일 수 있을 것이 사료된다.

Keywords

References

  1. Thariat J, Hannoun-Levi JM, Sun Myint A, Vuonq T, Gerard JP, Past. present and future of radiotherapy for the benefit of patent. Nat. Rev. Clin. Oncol. 2013;10(1):52-60. https://doi.org/10.1038/nrclinonc.2012.203
  2. Sorcini B, Tilikidis A. Clinical application of image-guided radiotherapy, IGRT(on the Varian OBI platform). Caner Radiother. 2006;10(5):252-7. https://doi.org/10.1016/j.canrad.2006.05.012
  3. Shimizu S, Shirato H et al. Detection of lung tumor movement in real-time tumor-tracking radiotherapy. Int. J Radiat. Oncol. Biol. Phys. 200;51(2)304-310. https://doi.org/10.1016/S0360-3016(01)01641-8
  4. Chang SD, Main W, Martin DP, Gibbs IC, Heilbrum MP. An analysis of the accuracy of the cyberknife: a robotic frameless stereotacitc radiosurgical system. Neurosurgery. 2003;52(1):140-6. https://doi.org/10.1227/00006123-200301000-00018
  5. Yu CX. Intensity-modulated arc therapy with dynamic mulfileaf collimation: an alterative to tomotherapy. Phys. Med. Biol. 1995;40(9):1435-1449. https://doi.org/10.1088/0031-9155/40/9/004
  6. Ling CC, Zang P, Archambaut Y, Bocanek J, Tang G, Losasso T. Commissioning and quality assurance of RapidArc radiotherapy delivery system. Int. J Radiat. Oncol. Biol. Phys., 2008;72(2):575-81. https://doi.org/10.1016/j.ijrobp.2008.05.060
  7. Lee S, Shin SW et al. X-band Linac for a 6 MeV dual-head radiation therapy gantry. Nuclear Instruments and Methods in Physics Research A. 2017;852(21): 40-5. https://doi.org/10.1016/j.nima.2016.11.034
  8. Grevillot L, Frisson T, Maneval D, Zahra N, Badel JN, Sarrut D. Simulation of a 6 MV Elekta Precise Linac photon beam using GATE/GEANT4. Phys. Med. Biol. 2011;56(4):903-918. https://doi.org/10.1088/0031-9155/56/4/002
  9. Lourenco B, Maigne L, Perrot Y, Chassin D, Donnarieis D. Intensity-modulated arc therapy using the gate Monte Carlo simulation platform in a grid environment", Physica Medica. 2013;29(1): e24.
  10. Kim HK, Han SJ, Kim JL, Kim BH, Chang SY, Lee JK. Monte Carlo Simulation of the Photon Beam Characteristics from Medical Linear Accelerators. Radiation Protection Dosimetry. 2006;119(1-4): 510-3. https://doi.org/10.1093/rpd/nci636
  11. Han SC, Park S. Monte Carlo simulation for development of diagnostics multleaf collimator. Journal of Radiological Science and Technology, 2016;39(4): 595-600. https://doi.org/10.17946/JRST.2016.39.4.15
  12. Verhaeven F, Nhum AE, Van de Putte S, Namito Y. Monte Carlo modeling of radiotherapy KV x-ray unit. Phys. Med. Biol. 1999;44(7):1769-89.
  13. Fix MK, Keal PJ, Dawson K, Siebers JV. Monte Carlo source model for photon beam radiotherapy: photon source characteristics. Med. Phys. 2004;31(11): 3106-21. https://doi.org/10.1118/1.1803431
  14. Bush K, Towonson R, Zavqorodni S, Monte Carlo simulation of Rapidarc radiotherapy delivery. Phys. Med. Biol. 2008;53(19):N359-370. https://doi.org/10.1088/0031-9155/53/19/N01
  15. Sarrut D, Bardies M et al. A review of the use and potential of the GATE Monte Carlo simulation code for radiotherapy and dosimetry applications. Med. Phys. 2014;41(6): 064301. https://doi.org/10.1118/1.4871617