• Title/Summary/Keyword: Water Pressure Measurement

Search Result 353, Processing Time 0.036 seconds

Study of Internal Flow in the supersonic Nozzle by the Hydraulic Analogy (수력학적 상사를 적용한 초음속 노즐 내부 유동 연구)

  • Lee, Ji-Hyung;Lee, Kyung-Hun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.477-482
    • /
    • 2009
  • Though rocket nozzle flow is very important to the rocket performance, the direct measurement is very difficult because of high temperature and high pressure gas flow. Then the experiment utilizing the hydraulic analogy has been developed for such a problem. Supersonic flows through an axisymmetric De Laval nozzle of solid rocket motor was simulated in a 2-D sluice-type water-table designed and manufactured utilizing hydraulic analogy. Methods to minimize or account for non-analogous effects in the hydraulic system must be reviewed for the quantitative application of the hydraulic analogy. In this application the water table is inclined slightly, so that gravity acceleration has a small component in the direction of motion, thus compensating for the effect of friction. Flow visualization leads to better understanding of the analogous system. Within the experimental errors, it is shown that the hydraulic analogy can be used as an effective tool for the study of two dimensional isentropic flows of gases in many fields.

  • PDF

Study on the photosynthetic characteristics of Eutrema japonica (Siebold) Koidz. under the pulsed LEDs for simulated sunflecks

  • Park, Jae Hoon;Kim, Sang Bum;Lee, Eung Pill;Lee, Seung Yeon;Kim, Eui Joo;Lee, Jung Min;Park, Jin Hee;Cho, Kyu Tae;Jeong, Heon Mo;Choi, Seung Se;Park, Hoey Kyung;You, Young Han
    • Journal of Ecology and Environment
    • /
    • v.45 no.1
    • /
    • pp.54-61
    • /
    • 2021
  • Background: The sunfleck is an important light environmental factor for plants that live under the shade of trees. Currently, the smartfarm has a system that can artificially create these sunfleks. Therefore, it was intended to find optimal light conditions by measuring and analyzing photosynthetic responses of Eutrema japonica (Miq.) Koidz., a plant living in shade with high economic value under artificial sunflecks. Results: For this purpose, we used LED pulsed light as the simulated sunflecks and set the light frequency levels of six chambers to 20 Hz, 60 Hz, 180 Hz, 540 Hz, 1620 Hz, and 4860 Hz of a pulsed LED grow system in a plant factory and the duty ratio of the all chambers was set to 30%, 50%, and 70% every 2 weeks. We measured the photosynthetic rate, transpiration rate, stomatal conductance, and substomatal CO2 partial pressure of E. japonica under each light condition. We also calculated the results of measurement, A/Ci, and water use efficiency. According to our results, the photosynthetic rate was not different among different duty ratios, the transpiration rate was higher at the duty ratio of 70% than 30% and 50%, and stomatal conductance was higher at 50% and 70% than at 30%. In addition, the substomatal CO2 partial pressure was higher at the duty ratio of 50% than 30% and 70%, and A/Ci was higher at 30% than 50% and 70%. Water use efficiency was higher at 30% and 50% than at 70%. While the transpiration rate and stomatal conductance generally tended to become higher as the frequency level decreased, other physiological items did not change with different frequency levels. Conclusions: Our results showed that 30% and 50% duty ratios could be better in the cultivation of E. japonica due to suffering from water stress as well as light stress in environments with the 70% duty ratio by decreasing water use efficiency. These results suggest that E. japonica is adapted under the light environment with nature sunflecks around 30-50% duty ratio and low light frequency around 20 Hz.

Effect of Sampling and Analytical Methods on the Fibrous Materials from the Ground Water (시료 채취 조건 및 검사방법에 따른 지하수내 섬유상 물질 검출 양상에 관한 연구)

  • Kim, Ji-Yong;Kim, Jung Ran;Cheong, Hae-Kwan;Lim, Hyun-Sul;Paik, Nam-Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.7 no.2
    • /
    • pp.209-222
    • /
    • 1997
  • Authors surveyed the ground water near the waste disposed from a fiberglass production factory to confirm the presence of glassfiber in the water and to determine the effect of sampling conditions and storage on the recovery of fibrous materials in the ground water. Sample was collected at every 4 hours for 48 hours consecutively. After finishing the 48 hours sample, water sampling was done from each tap after repeated turning on and off the water for 30 seconds at each time. Sample was collected in the two 1.5 liter polyethylene bottle after vigorously shaking the bottle with the same water several times with the flowing tap water. At each paired sample, one bottle was stored stand still at room temperature, and the other sample was filtered immediately after sampling. Water was filtered on the Mixed Cellulose Ester filter with negative pressure. Each sample was divided into upper and lower layer. The other bottle was stored at room temperature standstill for 7 days and filtered in the same fashion as the other pair of sample did. Each MCE filter was divided into 4 pieces and one piece was treated with acetone to make it transparent. Each prepared sample was observed by two researchers under the light and polarizing microscopy, scanning electron microscopy and energy dispersive X-ra microanalysis. Fibers were classified by the morphology and polarizing pattern under the polarizing microscope, and count was done. 1. There was a significant fluctuation in number of the fibers, but there was no specific demonstrable pattern. 2. Non-polarizing fibers frequently disappeared after 7 days's storage. But cluster of fibers were found at the wall of the same container by scratching technique. 3. Polarizing fibers were usually found in between the filter and the manicure pasted area. Possible explanations for this phenomenon will be that either these fibers are very light or have electronic polarity. Hence, these fibers are not able to be attached on the surface of slide glass. 4. Under the scanning electron microscopic examination, the fibers which are not refractive under the light microscopy were identified as glassfiber. Other fibers which is refractive under the polarizing microscopy were identified as magnesium silicate fibers. It is strongly suggested that development of standardized method of sample collection and measurement of fibrous material in the water is needed.

  • PDF

Measurement of Average Pool Boiling Heat Transfer Coefficient on Near-Horizontal Tube (수평 가까운 튜브 표면의 평균 풀비등 열전달계수의 측정)

  • Kang, Myeong-Gie
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.1
    • /
    • pp.81-88
    • /
    • 2014
  • An experimental study is performed to obtain an average heat transfer coefficient around the perimeter of a near horizontal tube. For the test a stainless steel tube of 50.8 mm diameter submerged in water at atmospheric pressure is used. Both subcooled and saturated pool boiling conditions are considered and the inclination angle of the tube is changed from the horizontal position to $9^{\circ}$ in steps of $3^{\circ}$. In saturated water, the local boiling heat transfer coefficient at the azimuthal angle of $90^{\circ}$ from the tube bottom can be regarded as the average of the coefficients regardless of the tube inclination angles. However, when the water is subcooled the location for the average heat transfer coefficient depends on the inclination angle and the heat flux. It is explained that the major mechanisms changing the heat transfer are closely related with the intensity of the liquid agitation and the generation of big size bubbles through bubble coalescence.

Reuse of Eluent by Controlling its Specific Gravity during the Chromatographic Purification of Paclitaxel (크로마토그래피를 이용한 Paclitaxel 정제에서 비중 조절에 의한 Eluent 재사용)

  • Kim, Jin-Hyun
    • KSBB Journal
    • /
    • v.22 no.5
    • /
    • pp.366-369
    • /
    • 2007
  • In this study, the feasibility of reusing the eluent was confirmed by monitoring its specific gravity during the chromatographic purification of paclitaxel from plant cell cultures. The specific gravity of the eluent (methanol/water = 70/30, v/v) was measured prior to its elution through the hydrophobic resin column. The measurement showed a specific gravity of 0.853. The discharged eluent from the column outlet was first evaporated under vacuum pressure. The evaporated eluent was collected and condensed into a liquid eluent again, followed by the HPLC analysis in order to check the presence of any trace of impurity. Even if the specific gravity of the liquid eluent is varied from 0.853 as a result of the evaporation and condensation, the eluent can still be reused after it specific gravity is adjusted by the addition of methanol or water. The reuse of the eluent resulted in the paclitaxel yield of 86% with a purity of 95% which were closely similar to those of before the eluent reuse. These results indicate that the strategy of reusing the eluent on the basis of the specific gravity analysis was successfully implemented in this study.

Finite Element Analysis of Concrete Railway Sleeper Damaged by Freezing Force of Water Penetrated into the Inserts (고속철도 콘크리트 궤도 매립전 내 침투수의 결빙압에 의한 균열손상해석)

  • Moon, Do-Young;Zi, Goang-Seup;Kim, Jin-Gyun;Jang, Seung-Yup
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.3
    • /
    • pp.240-247
    • /
    • 2011
  • Finite element analysis was undertaken to investigate the effect of freezing force of water unexpectedly penetrated into inserts used in railway sleeper on pullout capacity of anchor bolts for fixing base-plate onto concrete sleeper. Based on the in-situ investigation and measurement of geometry of railway sleeper and rail-fastener, the railway sleeper was modeled by 3D solid elements. Nonlinear and fracture properties for the finite element model were assumed according to CEB-FIP 1990 model code. And the pullout maximum load of anchor bolt obtained from the model developed was compared with experimental pullout maximum load presented by KRRI for verification of the model. Using this model, the effect of position of anchor bolt, amount of fastening force applied to the anchor bolt, and compressive strength of concrete on pull-out capacity of anchor bolts installed in railway sleeper was investigated. As a result, it is found that concrete railway sleepers could be damaged by the pressure due to freezing of water penetrated into inserts. And the pullout capacity of anchor bolt close to center of railway is slightly greater than that of the others.

Killing Effects of Different Physical Factors on Extracorporeal HepG2 Human Hepatoma Cells

  • Zhang, Kun-Song;Zhou, Qi;Wang, Ya-Feng;Liang, Li-Jian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.3
    • /
    • pp.1025-1029
    • /
    • 2012
  • Objective: To determine the killing effects on extracorporeal HepG2 cells under different temperatures, pressures of permeability and lengths of treatment time. Method: According to different temperatures, pressures of permeability and lengths of treating time, extracorporeal HepG2 cells of human hepatoma cell-line were grouped to 80 groups. Cell index (CI) as the measurement of killing effect were calculated by monotetrazolium (MTT) methods, i.e., CI =1- (the OD value in treated group - the OD value in blank control group) / (mean of untreated control group - mean of blank control group). According to the factorial design, data were fed into SPSS 10.0 and analyzed by three-way ANOVA (analysis of variance). Result: Temperature, pressure of permeability and length of treating time all had effects on the CI (cell index) level. Length of treating time was the most influential factor of the three. Additionally, any two of them all had statistically significant interactive effects on the CI level. When treated for 5-30 min, destilled water at $46^{\circ}C$ stably generated the highest CI. Conclusion: The "$46^{\circ}C$-destilled water-60 min" was considered as the optimal combination of conditions which lead to highest CI. We suggest exerting celiac lavage for 15 min with stilled water at $40^{\circ}C-43^{\circ}C$ in surgical practice as a hyperthermia treatment to achieve ideal killing effects on free cancer cells, which is feasible, practical, and clinically effective.

The detection of cavitation in hydraulic machines by use of ultrasonic signal analysis

  • Gruber, P.;Farhat, M.;Odermatt, P.;Etterlin, M.;Lerch, T.;Frei, M.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.4
    • /
    • pp.264-273
    • /
    • 2015
  • This presentation describes an experimental approach for the detection of cavitation in hydraulic machines by use of ultrasonic signal analysis. Instead of using the high frequency pulses (typically 1MHz) only for transit time measurement different other signal characteristics are extracted from the individual signals and its correlation function with reference signals in order to gain knowledge of the water conditions. As the pulse repetition rate is high (typically 100Hz), statistical parameters can be extracted of the signals. The idea is to find patterns in the parameters by a classifier that can distinguish between the different water states. This classification scheme has been applied to different cavitation sections: a sphere in a water flow in circular tube at the HSLU in Lucerne, a NACA profile in a cavitation tunnel and two Francis model test turbines all at LMH in Lausanne. From the signal raw data several statistical parameters in the time and frequency domain as well as from the correlation function with reference signals have been determined. As classifiers two methods were used: neural feed forward networks and decision trees. For both classification methods realizations with lowest complexity as possible are of special interest. It is shown that two to three signal characteristics, two from the signal itself and one from the correlation function are in many cases sufficient for the detection capability. The final goal is to combine these results with operating point, vibration, acoustic emission and dynamic pressure information such that a distinction between dangerous and not dangerous cavitation is possible.

Remote field Eddy Current Technique Development for Gap Measurement of Neighboring Tubes of Nuclear Fuel Channel in Pressurized Heavy Water Reactor (중수로 핵연료채널과 인접관의 간격측정을 위한 원거리장 와전류검사 기술개발)

  • Jung, H.K.;Lee, D.H.;Lee, Y.S.;Huh, H;Cheong, Y.M.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.2
    • /
    • pp.164-170
    • /
    • 2004
  • Liquid Injection Nozzle(LIN) tube and Calandria tube(CT) in pressurized Heavy Water Reactor (PHWR) are .ross-aligned horizontally. These neighboring tubes can contact each other due to the sag of the calandria tube resulting from the irradiation creep and thermal creep, and fuel load, etc. In order to judge the contact which might be the safety concern, the remote field eddy current (RFEC) technology is applied for the gap measurement in this paper. LIN can be detected by inserting the RFEC probe into pressure tube (PT) at the crossing point directly. To obtain the optimal conditions of the RFEC inspection, the sensitivity, penetration and noise signals are considered simultaneously. The optimal frequency and coil spacing are 1kHz and 200mm respectively. Possible noises during LIN signal acquisition are caused by lift-off, PT thickness variation, and gap variation between PT and CT. The simulated noise signals were investigated by the Volume Integral Method(VIM). Signal analysis on the voltage plane describes the amplitude and shape of LIN and possible defects at several frequencies. All the RFEC measurements in the laboratory were done in variance with the CT/LIN gap and showed the relationship between the LIN gap and the signal parameters by analyzing the voltage plane signals.

Correction for Membrane Penetration Effect during Isotropic Unloading and Undrained Cyclic Shear Process (등방제하과정과 반복전단과정에서의 멤브레인 관입량 및 보정식에 대한 실험적 고찰)

  • Kwon, Youngcheul;Bae, Wooseok;Oh, Sewook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3C
    • /
    • pp.201-207
    • /
    • 2006
  • Soil tests are generally conducted using a membrane to measure a pore water pressure. However, it has also been recognized that the membrane penetrates into the specimen by the change of the confining pressure, and it results in the erroneous measurement in the pore water pressure and the volumetric strain. This study examined the effectiveness of the correction equation of the membrane penetration on the basis of the experimental data acquired during the isotropic unloading and the cyclic shear process using the hollow cylindrical shear test equipment. The results showed that the membrane penetration by the correction equation could be overestimated when the mean effective stress was lower than 20kPa in this study. The limitations originated from the sudden increase near the zero effective stress, and in order to prevent the overestimation in low effective stress condition, the use of the constant a was proposed in this study. Furthermore, the correction equation for the membrane penetration had to be applied carefully when the initial relative density was high and the density changes were occurred by the relocation of the soil particle by the liquefaction.