• Title/Summary/Keyword: Water Pollutant load

Search Result 406, Processing Time 0.03 seconds

L-THIA Modification and SCE-UA Application for Spatial Analysis of Nonpoit Source Pollution at Gumho River Basin (환경부 토지피복 중분류 적용을 위한 L-THIA 모델 수정과 SCE-UA연계적용에 의한 금호강유역 비점오염 분포파악)

  • Kim, Jung-Jin;Kim, Tae Dong;Choi, Dong Hyuk;Lim, Kyoung Jae;Engel, Bernard;Jeon, Ji-Hong
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.2
    • /
    • pp.311-321
    • /
    • 2009
  • Long-Term Hydrologic Impact Assessment (L-THIA) was modified to improve runoff and pollutant load prediction for Korean watersheds with changes in land use classification and event mean concentration produced from observed data in Korea. The L-THIA model was linked with SCE-UA, which is one of the global optimization techniques, to automatically calibrate direct runoff. Modified L-THIA model was applied to Gumho River Basins to analyze spatial distribution of nonpoint source pollution. The results of model calibration during 1991~2000 and validation during 1981~1990 for direct runoff represented high model efficiency of 0.76 for calibration and 0.86 for validation. As a results of spatial analysis of nonpoint source pollution, the BOD was mainly loaded from urban area but SS, TN, and TP from agricultural area which is mainly located along the stream. Modified L-THIA model improve its accuracy with minimum imput data and application efforts. From this study, we can find out the L-THIA model is very useful tool to predict direct runoff and pollutant loads from the watershed and spatial analysis of nonpoint source pollution.

The Ecological Modeling for Estimation of Carrying Capacity in Masan Bay in 2002 summer (2002년 하계 마산만의 수질개선을 위한 환경용량산정 모델링)

  • Hong, Sok Jin;Lee, Won Chan;Park, Sung Eun;Jung, Rea Hong;Cho, Yoon Sik;Park, Jong Su;Kim, Dong Myung
    • Journal of Wetlands Research
    • /
    • v.9 no.2
    • /
    • pp.57-69
    • /
    • 2007
  • This study focused on coastal water quality response to land-based and sediment pollution loads and estimation of the carrying capacity in Masan Bay using an ecological model with the data in summer of 2002. A residual current was simulated to have a slightly complicated pattern with ranging from 0.1 to 1.5 cm/s. In Masan Bay, pollutant materials cannot flow from the inner to the outer bay easily because of residual currents flow southward at surface and northward at the bottom. The simulation results of COD distribution showed high concentrations over 3 mg/L in the inner part of Masan Bay related pollutant discharge. For improvement seawater quality grade I in Masan Bay, it is necessary to reduce the organic and inorganic loads from point sources by more than 80%. For improvement seawater quality grade II, it is necessary to reduce the organic and inorganic loads from point sources by more than 50% and ameliorate severe polluted sediment. The carrying capacity for COD is 2.32 ton/day and 7.16 ton/day for each grade.

  • PDF

An Empirical Study on Analysis Method of Impervious Surface Using IKONOS Image (IKONOS 위성영상을 이용한 불투수지표면 분석방법에 관한 실증연구)

  • 사공호상
    • Spatial Information Research
    • /
    • v.11 no.4
    • /
    • pp.509-518
    • /
    • 2003
  • Impervious surface affects urban climate, flood, and water pollution. With a higher paved rate, expanded heat containing capacity of buildings and roads raises atmospheric temperature, and increased quantity of the outflowed water brings flood during a heavy downpour. Moreover, increased non-point source pollutant load is accountable for water pollution. In this regard, it is definitely important to research and keep monitoring the current situation of paved surface, which influences urban ecosystem, disaster and pollution. In fact, collecting information on urban paved surface, which requires the time and expense, is very difficult due to its complicate structure. In order to solve the problem, this study suggested a method to utilize satellite image data for efficient survey on the current condition of paved surface. It analyzed the paved surface condition of Anyang-si by using IKONOS image and discussed the usefulness and limitation of this method.

  • PDF

Characteristics of Stormwater Runoff discharged from vinyl greenhouse growing area in farming area (농촌의 비닐하우스 재배지역에서 배출되는 강우유출수의 특성)

  • Jeon, Je Chan;Lee, Sang Hyeub;Kwon, Koo Ho;Lee, Jea Woon;Kwon, Heun Gag;Min, Kyung Sok
    • Journal of Wetlands Research
    • /
    • v.16 no.4
    • /
    • pp.413-422
    • /
    • 2014
  • In national water quality policy, it changed previous regulation method that focuses on concentration of pollutants in effluent water to the way that regulates total amount of pollutants. The target of water quality in watershed of each river was set up, as the government instituted Total Maximum Daily Loads(TMDL). In order to accomplish successfully TMDL, it requires that the amount of pollutant loads discharged from point and nonpoint pollutant source should be investigated. This study, therefore, conducted the monitoring of the stormwater runoff at field region in farming area. And pollutants loads and unit loads discharged from field region results is calculated. As a result, the concentration of pollutants were calculated as follows: 10.5 BOD mg/L, 19.6 $COD_{Mn}$ mg/L, 4.5 TN mg/L and 2.4 TP mg/L. The unit load of BOD, $COD_{Mn}$, TOC, TSS, TN and TP discharged from field region, also, were determined to $31.8kg/km^2/yr$, $56.7kg/km^2/yr$, $8.5kg/km^2/yr$, $560.9kg/km^2/yr$, $8.3kg/km^2/yr$ and $5.1kg/km^2/yr$, respectively. It was identified that there were some differences of unit loads between the results obtained from this study and previous one. To calculate exact unit loads, therefore, long term monitoring should be conducted.

Research on the Evaluation of Impaired Waterbody using the Flowrate Group at TMDL Unit Watershed in Nakdong River Basin (수질오염총량관리 단위유역 유량그룹별 수체 손상 분석)

  • Hwang, Ha-Sun;Kim, Sang-Soo;Kim, Jin-Lee;Park, Bae-Kyung
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.933-942
    • /
    • 2012
  • The purpose of this study is to evaluate the degree of waterbody impairment according to the flow conditions and present to the appropriate water quality improvement alternatives using observed water quality and flow for Total Maximum Daily Load (TMDL) implementation at 39 unit watersheds the nakdong river basin. Observed water quality data for 7 years are divided into five cumulative flow frequency group and comparing the each observed water quality data and TMDL Target water quality (TWQ) the last evaluate the water quality is impaired group. We found that the cumulative flow frequency group-specific the average excess rate of V group was the highest (32.86%), followed by the IV group (26.04%), group III (23.36%), II group (22.67%), I group (20.70%), the degree of impaired waterbody tended to be inversely proportional to the flow rate. Resulted from cumulative flow frequency group of impaired water quality assessment, 13 unit watersheds are impaired from a group IV and group V affected by point sources. Therefore, improvement of sewage discharge and the initial composition of the riparian buffer zone are needed. Nakbon F, Namkang D and Namkang E within 13 unit watersheds are impaired from group II and III affected by non-point sources. Therefore, application of Best Management Practices (BMPs) is needed for these watersheds. Evaluation of impaired waterbody using Cumulative flow frequency group is able to determine the extent of the judgment to TWQ exceeded by the flow conditions and helps proper setting Standard flow and planning pollutant reduction for TMDL.

Predicting the Effects of Agriculture Non-point Sources Best Management Practices (BMPs) on the Stream Water Quality using HSPF (HSPF를 이용한 농업비점오염원 최적관리방안에 따른 수질개선효과 예측)

  • Kyoung-Seok Lee;Dong Hoon Lee;Youngmi Ahn;Joo-Hyon Kang
    • Journal of Wetlands Research
    • /
    • v.25 no.2
    • /
    • pp.99-110
    • /
    • 2023
  • Non-point source (NP) pollutants in an agricultural landuse are discharged from a large area compared to those in other land uses, and thus effective source control measures are needed. To develop appropriate control measures, it is necessary to quantify discharge load of each source and evaluate the degree of water quality improvement by implementing different options of the control measures. This study used Hydrological Simulation Program-FORTRAN (HSPF) to quantify pollutant discharge loads from different sources and effects of different control measures on water quality improvements, thereby supporting decision making in developing appropirate pollutant control strategies. The study area is the Gyeseong river watershed in Changnyeong county, Gyeongsangnam-do, with agricultural areas occupying the largest proportion (26.13%) of the total area except for the forest area. The main pollutant sources include chemical and liquid fertilizers for agricultural activities, and manure produced from small scale livestock facilities and applied to agriculture lands or stacked near the facilities. Source loads of chemical fertilizers, liquid fertilizers and livestock manure of small scale livestock facilities, and point sources such as municipal wastewater treatment plants (WWTPs), community WWTPs, private sewage treament plants were considered in the HSPF model setup. Especially, NITR and PHOS modules were used to simulate detailed fate and transport processes including vegitation uptake, nutrient deposition, adsorption/desorption, and loss by deep percolation. The HSPF model was calibrated and validated based on the observed data from 2015 to 2020 at the outlet of the watershed. The calibrated model showed reasonably good performance in simulating the flow and water quality. Five Pollutants control scenarios were established from three sectors: agriculture pollution management (drainge outlet control, and replacement of controlled release fertilizers), livestock pollution management (liquid fertilizer reduction, and 'manure management of small scale livestock facilities) and private STP management. Each pollutant control measure was further divided into short-term, mid-term, and long-term scenarios based on the potential achievement period. The simulation results showed that the most effective control measure is the replacement of controlled release fertilizers followed by the drainge outlet control and the manure management of small scale livestock facilities. Furthermore, the simulation showed that application of all the control measures in the entire watershed can decrease the annual TN and TP loads at the outlet by 40.6% and 41.1%, respectively, and the annual average concentrations of TN and TP at the outlet by 35.1% and 29.2%, respectively. This study supports decision makers in priotizing different pollutant control measures based on their predicted performance on the water quality improvements in an agriculturally dominated watershed.

Impact Assessment of River Water Quality using Organic Pollutant Index - Industrial Waste Water - (유기물오염도 지표를 이용한 하천수질영향평가 - 산업폐수의 방류수질을 기준으로 -)

  • Jo, Soo-Hyun;Kang, Mee-A;Choo, Yang-Yeop;Jeong, Gyo-Cheol;Jung, Dong-Hee;Yi, Jun-Heung
    • The Journal of Engineering Geology
    • /
    • v.16 no.4 s.50
    • /
    • pp.373-379
    • /
    • 2006
  • We investigated the relationship of the organic pollutant index in wastewater where the high percentages of an organic load to a water body was found. Measuring of TOC was to identify the relationship with COD and BOD which were used already. The correlation coefficient (r) of TOC/COD, BOD/COD and TOC/BOD were effected by the types of industry such as paper, textile, chemical, food and metal industries. In food industry it was found that the highest correlation coefficient (r) of TOC/COD, BOD/COD and TOC/BOD as 0.967, 0.969 and 0.990, respectively. There is low correlation coefficient in many cases. Hence it was impossible that the use of TOC for the water standard or monitoring instead of COD and BOD directly. However it can be used as alternative index to management a water process in the case of waste water where there was found high correlation coefficient of TOC/ COD, BOD/COD and TOC/BOD. It was sure that the water quality of river body can be protected if we use these the relationship among organic index.

Computation and Assessment of Delivery Pollutant Loads for the Streams in the Nakdong River Basin (낙동강 소수계별 유달부하량 산정 및 평가)

  • Yoon, Young-Sam;Yu, Jae-Jeong;Kim, Moon-Su;Lee, Hae-Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.277-287
    • /
    • 2006
  • Production loads of the contaminants near the Nakdong-river are, BOD : $1,006ton{\cdot}day^{-1}$, TN : $117ton{\cdot}day^{-1}$, and TP : $21ton{\cdot}day^{-1}$. Among the sources of contamination, the biggest contribution to the production load was shared by the human population, which maintains 40.7% of BOD, 44.2% of TN, and 52.5% of TP production. Similarly, among the sources of discharge load, the human population contributed 45.0% of BOD, 34.5% of TN, and 45.8% of TP. Results of flow investigation in 2001 and 2002 indicate that among the side streams, Nam-river showed the greatest average flow. In case of main stream flow, it was increased in the downstream due to the increase of the influents from the side streams. In case of BOD, COD, TOC and SS, high values were detected at Keumho-river where industrial wastewater was discharged as high level concentration. In case of the main stream, Koryoung point where direct influence of Keumho-river and Seongseo industrial complex is evident showed high BOD, COD and TOC. Oxidized nitrogen compounds and total nitrogen showed similar patterns of BOD, COD, and TOC. Especially, nitrate nitrogen was relatively high at all points. However, in case of Chlorophyll-a, relatively high values were observed at mid- and downstream areas such as Koryoung, Namjee, Soosan, Moolkeum and Hakooeun. This could be caused by the slow flow rate and the abundant nutrient salts attributed by the side streams. Relatively better water quality was observed in 2002 when the flow was relatively abundant than that in 2001. Results of investigation during 2001-2002 showed that delivery load increased as the flow reaches downstream. In 2001, delivery loads at the downstream Soosan-bridge were BOD $22,152ton{\cdot}day^{-1}$, COD $45,467ton{\cdot}day^{-1}$, TN $22,062ton{\cdot}day^{-1}$, TP $926ton{\cdot}day^{-1}$. Delivery loads in 2002 were increased due to the increase of the rainfall. They are BOD $25,876ton{\cdot}day^{-1}$, COD $64,200ton{\cdot}day^{-1}$, TN $41,101ton{\cdot}day^{-1}$, and TP $1,362ton{\cdot}day^{-1}$.

Assessment of Pollutant Loads for Water Enhancement in the Mankyeong River (만경강 유역 오염부하량 평가)

  • Lee, Kyeong-Bo;Kim, Jong-Cheon;Kim, Jong-Gu;Lee, Deog-Bae;Park, Chan-Won;Kim, Jae-Duk
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.2
    • /
    • pp.83-90
    • /
    • 2005
  • This study was conducted to evaluate the influence of pollutant loads on the water quality in the Mankyeong River from January 2002 to December 2004. The BOD level in upstream ranged from 0.58 to 1.57 mg $L^{-1}$, which would be in I grade according to water quality criteria by Ministry of Environment but BOD level in midstream and downstream was III grade. T-N contents were high in midstream and the average T-P level ranged from 0.06 to 2.70 mg $L^{-1}$. The point raw loads of BOD was high in Iksancheon, Mokcheonpo and Cheongha basin. The point raw loads of T-N and T-P were high in Iksancheon and Cheongha watershed. The non-point low loads of BOD were 3,931 kg $day^{-1}$, 2,870 kg $day^{-1}$ and 2,827 kg $day^{-1}$ in Mokcheonpo, Top and Jeonju watershed, respectively. The major source of BOD effluent load was population, that of T-N and T-P effluent loads was livestock. The delivered load of T-N were high in Jeonju, Mokcheonpo, Gosan, Iksancheon watershed in order. The delivered load of T-N was high in Jeonju watershed and that of T-P was high in Jeonju and Iksancheon watershed. The delivery ratio of BOD and T-N at dry season were below 100% except Mokcheonpo watershed. The delivery ratio of BOD and T-N at raining season were high in Gosan watershed.

The Variation of Water Quality due to Sulice Gate Operation in Shiwha Lake (시화호의 배수갑문 운용에 따른 수질변화)

  • 김종구;김준우;조은일
    • Journal of Environmental Science International
    • /
    • v.11 no.12
    • /
    • pp.1205-1215
    • /
    • 2002
  • To evaluate the change for water quality after the water gate operation in Shiwha lake, in situ survey were conducted on september in 2000 and January, march, jane in 2001. Chemical characteristics and eutrophication level was estimated from the survey data. The water quality of the Shihwa lake was greatly affected by pollutant load from rainfall, and formation of stratification in summer and winter was increased to effect on nutrient release from sediment. Especially, high concentration of chlorophyll-a was occurred in autumn, due to increased nutrient, high water temperature and low salinity after rainfall runoff. The mean concentration of DIN, DIP were 0.346mg/L, 0.0217mg/L in surface water and 0.826mg/L, 0.0415mg/L in bottom water, respectively, which were over III grade of seawater standard. Also high percentage of ammonia nitrogen to DIN in bottom water for autumn and winter was affected by released nutrient from sediment. Correlation analysis of chlorophyll-a versus TSS was shown that organic matter was affected by autochthonous organic matter stem from the algae, these factor showed reverse correlation about salinity. Closely correlations among to the water quality constituent in continuity survey was appeared. The results of eutrophication index estimation showed the high potentiality of red tide occurrence in Shiwha lake, particularity in summer or fall. Overall water quality was greatly improve to compared with measuring data during 1997~1998 at the beginning water gate operation, which reported by KORDI. Therefore, to improve of water quality in Shiwha lake, we need to establish of management plan about nutrient release from sediment, rainfall runoff, maximum of seawater exchange.