• Title/Summary/Keyword: Water Mass

Search Result 3,695, Processing Time 0.028 seconds

Prediction of Diesel Fuel Spray Characteristics in Compression Ignition Engine Cylinder by Intake Humidification (흡기 가습에 의한 압축 착화엔진 실린더 내 디젤 연료 분무 특성 예측)

  • Min, Se Hun;Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.23 no.1
    • /
    • pp.30-35
    • /
    • 2018
  • The objective of this study is to predict numerically the effect of intake humidification on the injected diesel fuel spray characteristics in a compression ignition engine. In this work, Wave model and Ducowicz model were applied as the break-up model and evaporation model, respectively. The amount of water vapor for the humidification was changed from 0% to 30% of injected fuel mass. The number of applied meshes was generated from 49,000 to 110,000. At the same time, the results of this work were compared in terms of spray tip penetration, SMD and equivalence ratio distributions. It was found that the cylinder temperature and cylinder pressure were decreased with increasing water vapor mass by vaporization latent heat and specific heat, however, the difference was very small. So, the spray tip penetration was not different by water vapor mass. Also, higher equivalence ratio distributions were observed with increasing water vapor mass by the improvement of fuel atomization.

Experimental Study on Structural and Functional Characteristics of Surface-Modified Porous Membrane (다공성 멤브레인의 표면 개질에 따른 구조 및 성능 특성에 대한 실험 연구)

  • Lee, Sang Hyuk;Kim, Kiwoong
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.1
    • /
    • pp.50-56
    • /
    • 2021
  • With the advances in recent nanotechnology, mass transport phenomena have been receiving large attention both in academic researches and industrial applications. Nonetheless, it is not clearly determined which parameters are dominant at nanoscale mass transport. Especially, membrane is a kind of technology that use a selective separation to secure fresh water. The development of great separation membrane and membrane-based separation system is an important way to solve existing water resource problems. In this study, glass fiber-based membranes which are treated by graphene oxide (GO), poly-styrene sulfonate (GOP) and sodium dodecyl sulfate (GPS) were fabricated. Mass transport parameters were investigated in terms of material-specific and structure-specific dominance. The 3D structural information of GO, GOP, and GPS was obtained by using synchrotron X-ray nano tomography. In addition, electrostatic characteristic and water absorption rate of the membranes were investigated. As a result, we calculated internal structural information using Tomadakis-Sotrichos model, and we found that manipulation of surface characteristics can improve spacer arm effect, which means enhancement of water permeability by control length of ligand and surface charge functionality of the membrane.

Sway Added Mass of a Rectangular Cylinder in a Restricted Water

  • Hwang, J.H.;Rhee, K.P.;Kang, C.K.
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.19 no.1
    • /
    • pp.3-14
    • /
    • 1982
  • In this paper, the sway added mass of a rectangular cylinder in a restricted water is considered by applying Hamilton's principle as the frequency tends to zero. The present method is an extension of Isshiki's method proposed in 1978. In the present method, it is assumed that the fluid velocity distribution in each subdomain of the fluid can be represented by higher order polynomials while Isshiki assumed linear velocity distribution. The fluid flow is assumed as a rotational motion in the present analysis. However, the results obtained from the present method show good agreement with Bai's numerical results for the case of large clearances between a canal wall and a cylinder. From Kelvin's minimum energy theorem, we can see that the value of sway added mass obtained from the present method approaches the upper bound. The approximate formula obtained in the present study takes a simple form which consists of the dimensions of the canal and the cylinder. The present formulae are derived for the cases of a rectangular cylinder swaying at the center of a narrow or wide canal relative to a cylinder, at off-center location in a canal, and in the restricted water with a single wall. From the results of numerical calculation, it is concluded that the sway added mass in restricted waters is more affected by water depth than clearance between a wall and a cylinder.

  • PDF

A MASS LUMPING AND DISTRIBUTING FINITE ELEMENT ALGORITHM FOR MODELING FLOW IN VARIABLY SATURATED POROUS MEDIA

  • ISLAM, M.S.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.3
    • /
    • pp.243-259
    • /
    • 2016
  • The Richards equation for water movement in unsaturated soil is highly nonlinear partial differential equations which are not solvable analytically unless unrealistic and oversimplifying assumptions are made regarding the attributes, dynamics, and properties of the physical systems. Therefore, conventionally, numerical solutions are the only feasible procedures to model flow in partially saturated porous media. The standard Finite element numerical technique is usually coupled with an Euler time discretizations scheme. Except for the fully explicit forward method, any other Euler time-marching algorithm generates nonlinear algebraic equations which should be solved using iterative procedures such as Newton and Picard iterations. In this study, lumped mass and distributed mass in the frame of Picard and Newton iterative techniques were evaluated to determine the most efficient method to solve the Richards equation with finite element model. The accuracy and computational efficiency of the scheme and of the Picard and Newton models are assessed for three test problems simulating one-dimensional flow processes in unsaturated porous media. Results demonstrated that, the conventional mass distributed finite element method suffers from numerical oscillations at the wetting front, especially for very dry initial conditions. Even though small mesh sizes are applied for all the test problems, it is shown that the traditional mass-distributed scheme can still generate an incorrect response due to the highly nonlinear properties of water flow in unsaturated soil and cause numerical oscillation. On the other hand, non oscillatory solutions are obtained and non-physics solutions for these problems are evaded by using the mass-lumped finite element method.

Numerical simulation of pressure relief in hard coal seam by water jet cutting

  • Song, Dazhao;Wang, Enyuan;Xu, Jiankun;Liu, Xiaofei;Shen, Rongxi;Xu, Wenquan
    • Geomechanics and Engineering
    • /
    • v.8 no.4
    • /
    • pp.495-510
    • /
    • 2015
  • The applications of water jet cutting (WJC) in coal mine have progressed slowly. In this paper, we analyzed the possibility and reasonableness of WJC application to pressure relief in hard coal seam, simulated the distributive characteristics of stress and energy fields suffered by hard coal roadway wallrock and the internal relationships of the fields to the instability due to WJC (including horizontal radial slot and vertical annular slot) on roadway wallrock. The results showed that: (1) WJC can unload hard coal seam effectively by inducing stress release and energy dissipation in coal mass near its slots; its annular slots also can block or weaken stress and energy transfer in coal mass; (2) the two slots may cause "the beam structure" and "the small pillar skeleton", and "the layered energy reservoir structure", respectively, which lead to the increase in stress concentration and energy accumulation in coal element mass near the slots; (3) the reasonable design and optimization of slots' positions and their combination not only can significantly reduce the scope of stress concentration and energy accumulation, but also destroy coal mass structure on a larger scale to force stress to transfer deeper coal mass.

Heat and Mass Transfer Characteristics of a Falling Film Ammonia Absorber with Respect to the Vapor Flow Direction (유하액막식 암모니아 흡수기에서 증기 유동방향에 따른 열 및 물질전달 특성)

  • 권경민;정시영;김병주;정은수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.1
    • /
    • pp.16-25
    • /
    • 2004
  • The flow and heat/mass transfer in the falling-film of a heat exchanger can be influenced by the motion of the surrounding refrigerant vapor. In this study, the effect of the vapor flow direction on the absorption heat transfer has been investigated for a falling-film helical coil which is frequently used as the absorber of ammonia/water absorption refrigerators. The experiments were carried out for different solution concentration. The heat and mass transfer performance was measured for both parallel and counter-current flow. The effect of vapor flow on the heat and mass transfer is found to be increased with decreasing solution concentration. In the experiments with low solution concentration, whose vapor specific volume is great, the counter-current flow of vapor resulted in uneven distribution of falling-film and reduced the heat transfer performance of the absorber. The direction of the vapor flow hardly affected the thermal performance as the solution concentration became stronger since the specific volume of the ammonia/water vapor was much smaller than that of the water vapor.

Characteristics of Heat and Mass Transfer for a Falling Film Type Absorber with Insert Spring Tubes (스프링삽입형 유하액막식 흡수기의 열 및 물질전달 특성)

  • 윤정인;오후규;백목효부
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1501-1509
    • /
    • 1995
  • It is known that the heat and mass transfer characteristics in the absorber are most sensitive of the temperature boost of all the heat exchangers and the development of a more efficient absorber should be highly important. This paper describes absorption experiments made with different inside tube diameters, tube length and tube shapes. The purpose of this study is to acquire basic knowledge about heat and mass transfer in a falling film type absorber with vertical inner tubes. Heat and mass transfer were measured for water vapor absorption into a Lithium Bromide-water solution flowing down an absorber of vertical inner tubes. As a result, insert spring tube compares bare tube and heat transfer improved by order of insert spring tube P2(pitch 20 mm) and P1(pitch 10 mm).

Enhancement of Heat and Mass Transfer for a Vertical Type Absorber (수직흡수기의 열 및 물질전달 촉진)

  • 권오경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.362-370
    • /
    • 1998
  • Absorption systems require a heat source for working but they have a great merit in that relatively low-temperature and low-quality types of thermal energy such as solar heat and exhaust heat can be effectively utilized as heat source. However details research related to absorbers which have a great effect on performances has been rarely done and thus there has been a strong hope for positive developments to improve their efficiencies. This paper describes absorption experiments made with different inside tube diameters and shapes. The purpose of this study is to acquire basic knowledge about heat and mass transfer in a falling film type absorber with vertical inner tubes. Heat and mass transfer were measured for water vapor absorption into a water/LiBr solution flowing down an absorber of vertical inner tubes. As a result absorption acceleration tube compares bare tube and heat transfer improved by order of insert spring tube corrugated tube grooved tube. And the acceleration that is good provided in inserting spring tube for both sides of heat and mass transfer.

  • PDF

Association of Body Composition with the Development of Airway Hyper-Responsiveness (메타콜린을 이용한 기도 과민반응과 체성분과의 관계)

  • Jin, Hyun-Jung;Shin, Kyeong-Cheol;Chung, Jin-Hong;Lee, Kwan-Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.70 no.3
    • /
    • pp.235-241
    • /
    • 2011
  • Background: The rising prevalence of asthma may be associated with the rising prevalence of obesity in developed nations. There are several studies showing that obesity increases the risk of asthma in adults. We investigated the association of each body composition scale and bronchial hyper-responsiveness. Methods: This study involved a retrospective review of the existing records for 279 subjects with respiratory symptoms, who underwent a pulmonary function test, a methacholine challenge test and a body composition test between May 2007 and June 2009. Results: Of the 279 subjects, 179 (64%) were female. There was a statistically significant difference in fat free mass and in fat free mass index between the normal bronchial responsiveness group and bronchial hyper-responsiveness group (p=0.036; p=0.000). There was no significant differences in body mass index, in fat mass and fat free mass index in the normal bronchial responsiveness group and bronchial hyper-responsiveness group in males. However in females, body mass index and fat free mass index were increased in the bronchial hyper-responsiveness group (p=0.044; p=0.000). Total body water (kg), fat free mass (kg) and soft lean mass (kg) were significantly different between the normal bronchial responsiveness group and bronchial hyper-responsiveness group (p=0.002; p=0.000; p=0.000). Conclusion: This study showed significant differences in fat free mass and in fat free mass index between the normal bronchial responsiveness group and the bronchial hyper-responsiveness group. In females, BMI, soft lean mass, and total body water showed significant differences between the normal bronchial responsiveness group and the bronchial hyper-responsiveness group. We concluded that bronchial hyper-responsiveness was associated with not only body mass index but also fat free mass index in female bronchial asthma.

암모니아/물 흡수식 냉동기의 대향류 판형 재생기의 수치모델

  • 지제환;정은수;정시영
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.10
    • /
    • pp.1034-1041
    • /
    • 2001
  • A numerical model which simulates the flow boiling process of the ammonia/water solution within a plate type generator for ammonia/water absorption refrigerators was developed. The ammonia/water solution flows downward under gravity and the ammonia/water vapor generated by flow boiling flows upward. The heating medium flows counter to the ammonia/water solution. The flow pattern within the generator was assumed to be a bubbly flow, and the liquid and vapor phases were assumed to be saturated. It was shown that the boiling of ammonia occurred mainly in the upper part of the generator. The effects of the heating medium inlet temperature, the mass flow rate of the heating medium and the mass flow rate of ammonia/water solution into the generator on the generation of ammonia/water vapor were investigated.

  • PDF