• Title/Summary/Keyword: Water Management

Search Result 7,824, Processing Time 0.041 seconds

Strategies to improve irrigation water management for rice production in Pulangui River Irrigation System

  • Siem, Paul Roderick M.;Ahmad, Mirza Junaid;Choi, Kyung-Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.509-509
    • /
    • 2022
  • Rice has always been the anchor of food security in the Philippines and the government is adamant about sustaining rice production by ensuring reliable irrigation water availability. Among the numerous irrigation schemes, the importance of the Pulangui River Irrigation System (PRIS) is undeniable, as it is the largest and primary irrigation source for rice production areas which are considered the food basket in Northern Mindanao. However, the ageing irrigation structures, unlined canals, long-standing water delivery systems, and climate change are compromising the performance of PRIS; and every year, during the dry and wet season, the maximum rice irrigable area is not achieved. From the field-scale water management perspective, untimely irrigation application, an unregulated roster of turn for irrigation among farmers, and the traditional practice of flooding the rice fields are the main causes of substantial water losses in conveyance, distribution, and farm application of irrigation water. Hence, proper irrigation scheduling is crucial to cultivate the maximum irrigable area by ensuring equity among the farmers and to increase the water use efficiency and yield. In this study, the FAO single crop coefficient approach was adopted to estimate rice water requirements, which were subsequently used to suggest appropriate irrigation schedules based on the recommended field-scale rice cultivation practices. The study results would improve the irrigation system management in the study area by facilitating in regulating the canal water flows and releases according to suggested irrigation schedules that could lead to increased benefited area, yield, and water efficiency without straining the available water resources.

  • PDF

Comparative Analysis of Baseflow Separation using Conventional and Deep Learning Techniques

  • Yusuff, Kareem Kola;Shiksa, Bastola;Park, Kidoo;Jung, Younghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.149-149
    • /
    • 2022
  • Accurate quantitative evaluation of baseflow contribution to streamflow is imperative to address seasonal drought vulnerability, flood occurrence and groundwater management concerns for efficient and sustainable water resources management in watersheds. Several baseflow separation algorithms using recursive filters, graphical method and tracer or chemical balance have been developed but resulting baseflow outputs always show wide variations, thereby making it hard to determine best separation technique. Therefore, the current global shift towards implementation of artificial intelligence (AI) in water resources is employed to compare the performance of deep learning models with conventional hydrograph separation techniques to quantify baseflow contribution to streamflow of Piney River watershed, Tennessee from 2001-2021. Streamflow values are obtained from the USGS station 03602500 and modeled to generate values of Baseflow Index (BI) using Web-based Hydrograph Analysis (WHAT) model. Annual and seasonal baseflow outputs from the traditional separation techniques are compared with results of Long Short Term Memory (LSTM) and simple Gated Recurrent Unit (GRU) models. The GRU model gave optimal BFI values during the four seasons with average NSE = 0.98, KGE = 0.97, r = 0.89 and future baseflow volumes are predicted. AI offers easier and more accurate approach to groundwater management and surface runoff modeling to create effective water policy frameworks for disaster management.

  • PDF

Establishment of Water Quality Standards and Water Quality Target in the Geum-River Basin (금강수계의 물환경기준과 목표수질 설정방안)

  • Yi, Sangjin
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.3
    • /
    • pp.438-442
    • /
    • 2013
  • According to Geum-River restoration project, given conditions for management of water environment in the Geum-River were changed. Because of those changes, this study was investigated the establishment of water quality standards and water quality target in the Geum-River basin. For management of water environment in the Geum-River, the sub-basins and watersheds are newly divided and the water quality and ecosystem standards in the sub-basins are reestablished. Considering the consistency of water environment policy and legal system, the legal name of sub-basins and watersheds are unified. TMDL (total maximum daily load) should be implemented in the sub-basin where exceeds the water quality standards and the number of water pollutant among the water quality parameters which exceeds the water quality standards are extremely minimized. The water quality target of water pollutant for implementation of TMDL should be established same or higher concentration of water quality standards.

Improving water use efficiency in the Upper Central Irrigation Area in Thailand via soil moisture system and local water user training

  • Koontankulvong, Sucharit;Visessri, Supatra
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.8-12
    • /
    • 2022
  • Water loss is one of the typical but challenging problems in water management. To reduced water loss or increase water efficiency, the pilot projects were implemented in the TTD's irrigation area. Modern soil moisture technology and local level water user training were conducted together as a mean to achieve improved water efficiency. In terms of technology, soil moisture sensors and monitoring system were used to estimate crop water requirement to reduce unnecessary irrigation. This was found to save 16.47% of irrigated water and 25.20% of irrigation supply. Further improvement of water efficiency was gained by means of local level water user training in which stakeholders were engaged in the network of communications and co-planning. The lessons learnt from the TTD pilot project was translated into good water management practices at local level.

  • PDF

Enhancement of Water Purification Functions of Watershed Basin (II) -­With a Special Reference to the Point at Issue and Counterplans­- (수변구역 산림의 수질정화기능 증진 (II) -­문제점과 대책을 중심으로­-)

  • Park, Jae-Hyeon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.3
    • /
    • pp.58-65
    • /
    • 2002
  • This study synthesizes previous research accomplishments with analysis of problems and counterplan for the riparian forest zone management and ongoing research strategy is suggested. If a part of budgets for water use allotments is supported for forest watershed owner, this policy for the forest owner could encourage the forest management of watershed. Integrated riparian forest management guideline in city and county needs to be established for the implementation of government guidelines. Base on the guideline, working plans of city and county could be evaluated. Public Forest Tending Work for stream water quality and quantity conservation should be enlarged for forest watershed and forest area management in five big river watersheds. Forest watershed should be managed with a connected system for a pollutant reduction strategy in urban and industrial areas.

The case study on wireless lan design technique for Bansong purification plant using network integrated management system and security switch (네트워크 통합관리시스템과 보안스위치를 이용한 반송정수장 무선랜 구축사례)

  • Park, Eunchul;Choi, Hyunju
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.4
    • /
    • pp.309-315
    • /
    • 2018
  • Currently, the commercialization of the $5^{th}$ Generation (5G) service is becoming more prevalent in domestic communication network technology. This has reduced communication delay time and enabled large-capacity data transmission and video streaming services in real-time. In order to keep pace with these developments, K-water has introduced a smart process control system in water purification plants to monitor the status of the water purification process. However, since wireless networks are based on the public Long Term Evolution (LTE) network, communication delay time remains high, and high-resolution video services are limited. This is because communication networks still have a closed structure due to expense and security issues. Therefore, with 5G in its current form, it is very difficult to accommodate future services without improving the infrastructure of its communication networks. In recognition of these problems, this study implemented the authentication and management function of wireless networks on a wired network management system in the K-water Bansong water purification plant. The results confirmed that wired Local Area Network (LAN) services give a higher security performance than an expensive commercial wireless LAN system. This was achieved by using an Internet Protocol (IP) address management system of wired networks and the packet filtering function of the Layer2 (L2) switch. This study also confirmed that it is possible to create a wireless LAN service that is 3.7 times faster than the existing LTE communication network.

Nature-based Solutions for Climate-Adaptive Water Management: Conceptual Approaches and Challenges (기후변화대응 물관리를 위한 자연기반해법의 개념적 체계와 정책적 과제)

  • Park, Yujin;Oh, Jeill
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.4
    • /
    • pp.177-189
    • /
    • 2022
  • Nature-based Solutions (NbS) are defined as practical and technical approaches to restoring functioning ecosystems and biodiversity as a means to address socio-environmental challenges and provide human-nature co-benefits. This study reviews NbS-related literature to identify its key characteristics, techniques, and challenges for its application in climate-adaptive water management. The review finds that NbS has been commonly used as an umbrella term incorporating a wide range of existing ecosystem-based approaches such as low-impact development (LID), best management practices (BMP), forest landscape restoration (FLR), and blue-green infrastructure (BGI), rather than being a uniquely-situated practice. Its technical form and operation can vary significantly depending on the spatial scale (small versus large), objective (mitigation, adaptation, naturalization), and problem (water supply, quality, flooding). Commonly cited techniques include green spaces, permeable surfaces, wetlands, infiltration ponds, and riparian buffers in urban sites, while afforestation, floodplain restoration, and reed beds appear common in non- and less-urban settings. There is a greater lack of operational clarity for large-scale NbS than for small-scale NbS in urban areas. NbS can be a powerful tool that enables an integrated and coordinated action embracing not only water management, but also microclimate moderation, ecosystem conservation, and emissions reduction. This study points out the importance of developing decision-making guidelines that can inform practitioners of the selection, operation, and evaluation of NbS for specific sites. The absence of this framework is one of the obstacles to mainstreaming NbS for water management. More case studies are needed for empirical assessment of NbS.

Policy Directions of Total Maximum Daily Loads for the Scientific Management of Water Quality (과학적인 수질관리를 위한 오염총량관리제도의 추진 방안)

  • Park, Seok-Soon;Na, Yu-Mee;Na, Eun-Hye
    • Journal of Environmental Impact Assessment
    • /
    • v.10 no.2
    • /
    • pp.157-165
    • /
    • 2001
  • This paper presents the policy directions of total maximum daily loads(TMDL), which was recently adopted in Korea, for scientific management of water quality. The basic principles of water quality management are also discussed in this paper, along with the TMDL policy in United States as well as the previous policy in Korea. We discussed several unreasonable points out of the previous approaches, such as regulation of all point sources with equal standards, negligence of an assimilative capacity of the receiving water, and emphasis only on drinking water supply, etc.. For successful applications of the TMDL policy in Korea, the following directions are suggested: 1) the unit drainage basin for each TMDL application should be given, 2) the water body where the water quality standards should be maintained, needs to be guided, 3) the water quality parameters of TMDL should be given, 4) the technical guidances should be given for applications of water quality models, and 5) the seasonal TMDL would be allowed. In order to maximize the benefits of the TMDL policy, the local governments would need to implement the following strategies: 1) the increment of an assimilative capacity of the receiving water, 2) the effective controls of the non-point source pollution, 3) the advanced treatment of the point sources, 4) application of system optimization techniques along with effluent trade, and 5) utilization of watershed management systems.

  • PDF

Quality Assessment of the Nationwide Water Pollution Source Survey Results on the Prioritized Toxic Water Pollutants from Industrial Sources in the Geum-River Basin by Exploratory Data Analysis (금강유역 산업계 특정수질유해물질 배출현황에 대한 탐색적 데이터 분석을 통한 전국오염원조사 결과 적합성 평가)

  • Kim, Eun-Ah;Kim, Yeon-Suk;Kim, Yong Seok;Rhew, Doug Hee;Jung, Je Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.6
    • /
    • pp.585-595
    • /
    • 2014
  • The temporal trends of the prioritized toxic water pollutants generated and discharged from the industrial facilities in the Geum-River basin, Korea were analyzed with the results of the nationwide Water Pollution Source Survey conducted in 2001 - 2012. The statistical results indicated rapid increase in the volume of raw toxic wastewaters whereas the amount of each toxic pollutant kept fluctuating for 12 years. Serious discrepancies in the survey data of the same type of industries demonstrated a low reliability of the survey result, which stemmed from several error factors. A unit-load for each type of industrial facility was devised to estimate the amount of prioritized toxic water pollutant based on the total volume of industrial wastewater generated from the same type of industrial facilities. The supplementary measures with an effective permit issuance policy and adding survey parameters of terminal wastewater treatment plants to use them as references to the Water Pollution Source Survey were suggested as means to minimize the errors associated with the false reports from the industries.

Analyses of the Environmental Characteristics of Ponds in Golf Courses for Ecological Management (골프장 연못의 생태적 관리를 위한 환경특성 분석)

  • Ahn Deug-Soo;Kim Chang-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.33 no.6 s.113
    • /
    • pp.51-77
    • /
    • 2006
  • Pond management is a critical part of overall golf course management, both during growth and maintenance modes of turf care. This study investigated 48 ponds in nine 18- or 27-hole golf courses to analyze the environmental characteristics of ponds. The research process had three phases: (1) inventory and analysis of grading plans and drainage plans, (2) field verification and interviews with greenskeepers, and (3) analyses of water quality and statistics. All data were collected from May to August in 2004. The results of this study can be summarized as follows: 1. It is desirable to site a golf course in a small watershed with high watershed eccentricity to control storm water runoff efficiently and to minimize soil erosion during construction. 2. The siting and size of a pond should be determined through a land-use analysis of the watershed for the purpose of ecological management. The bigger the forest-to-golf course ratio, the better the water quality will be. 3. The size and capacity of each individual ponds varied and there were many somewhat longish rather than round ponds. 4. There were many differences among golf courses in naturalness of the ponds, and the correlation between naturalness and area of aquatic plants was very high. 5. Analyses of pond water quality indicated that the degrees of Dissolved Oxygen, Chemical Oxygen Demanded and Suspended Solids were relatively low values but Total Phosphorus and Total Nitrogen were too high. Therefore a systematic approach is needed to solve e problem. Pesticide residues were not detected in all ponds. 6. Water depth and area of hydrophyte should be considered when designing an ecological pond. 7. All ponds used storm water as a main source of water supply and added underground water. Aquatic plants and physical methods such as water aeration and spray fountains were the main choices for maintaining a healthy aquatic environment.