In this paper, we attempted to produce the cloud forecast that use the numerical weather prediction(NWP) MM5 for objective cloud forecast. We presented two methods for cloud forecast. One of them used total cloud mixing ratio registered to sum(synthesis) of cloud-water and cloud-ice grain mixing ratio those are variables related to cloud among NWP result data and the other method that used relative humidity. An experiment was carried out period from 23th to 24th July 2004. According to the sequence of comparing the derived cloud forecast data with the observed value, it was indicated that both of those have a practical use possibility as cloud forecast method. Specially in this Case study, cloud forecast method that use total cloud mixing ratio indicated good forecast availability to forecast of the low level clouds as well as middle and high level clouds.
Ler, Lian Guey;Kim, Byung-Sik;Choi, Gye-Woon;Kang, Byung-Hwa;Kwang, Jung-Jae
한국습지학회지
/
제13권1호
/
pp.13-23
/
2011
In this study, Mike11 will be used as the numerical model where a data assimilation method will be applied to it. This paper aims to gain an insight and understanding of data assimilation in flood forecasting models. It will start with a general discussion of data assimilation, followed by a description of the methodology and discussion of the statistical error forecast model used, which in this case is the linear regression. This error forecast model is applied to the water level forecast simulated by MIKE11 to produced improved forecast and validated against real measurements. It is found that there exists a phase error in the improved forecasts. Hence, 2 general formula are used to account for this phase error and they have shown improvement to the accuracy of the forecasts, where one improved the immediate forecast of up to 5 hours while the other improved the estimation of the peak discharge.
This study analyzed the synoptic distribution and vertical structure about four cases of precipitation occurrences using NCEP/NCAR reanalysis data and upper level data of winter intensive observation to be performed by National Institute of Meteorological Research at Bukgangneung, Incheon, Boseong during 63days from 4 JAN to 6 MAR in 2012, and Observing System Experiment (OSE) using 3DVAR-WRF system was conducted to examine the precipitation predictability of upper level data at western and southern coastal regions. The synoptic characteristics of selected precipitation occurrences were investigated as causes for 1) rainfall events with effect of moisture convergence owing to low pressure passing through south sea on 19 JAN, 2) snowfall events due to moisture inflowing from yellow sea with propagation of Siberian high pressure after low pressure passage over middle northern region on 31 JAN, 3) rainfall event with effect of weak pressure trough in west low and east high pressure system on 25 FEB, 4) rainfall event due to moisture inflow according to low pressures over Bohai bay and south eastern sea on 5 MAR. However, it is identified that vertical structure of atmosphere had different characteristics with heavy rainfall system in summer. Firstly, depth of convection was narrow due to absence of moisture convergence and strong ascending air current in middle layer. Secondly, warm air advection by veering wind with height only existed in low layer. Thirdly, unstable layer was limited in the narrow depth due to low surface temperature although it formed, and also values of instability indices were not high. Fourthly, total water vapor amounts containing into atmosphere was small due to low temperature distribution so that precipitable water vapor could be little amounts. As result of OSE conducting with upper level data of Incheon and Boseong station, 12 hours accumulated precipitation distributions of control experiment and experiments with additional upper level data were similar with ones of observation data at 610 stations. Although Equitable Threat Scores (ETS) were different according to cases and thresholds, it was verified positive influence of upper level data for precipitation predictability as resulting with high improvement rates of 33.3% in experiment with upper level data of Incheon (INC_EXP), 85.7% in experiment with upper level data of Boseong (BOS_EXP), and 142.9% in experiment with upper level data of both Incheon and Boseong (INC_BOS_EXP) about accumulated precipitation more than 5 mm / 12 hours on 31 January 2012.
Among many UNESCO world heritage sites in Korea, "Historic Village: Hahoe" is adjacent to Nakdong River and it is imperative to monitor the water level near the village in a bid to forecast floods and prevent disasters resulting from floods.. In this paper, we propose a recurrent neural network with multiple hidden layers to predict the water level near the village. For training purposes on the proposed model, we adopt the sixth-order error function to improve learning for rare events as well as to prevent overspecialization to abundant events. Multiple hidden layers with recurrent and crosstalk links are helpful in acquiring the time dynamics of the relationship between rainfalls and water levels. In addition, we chose hidden nodes with linear rectifier activation functions for training on multiple hidden layers. Through simulations, we verified that the proposed model precisely predicts the water level with high peaks during the rainy season and attains better performance than the conventional multi-layer perceptron.
K-water의 분포형 강우-유출모형인 K-DRUM(K-water hydrologic & hydraulic Distributed RUnoff Model)은 단기예측 강수자료를 통해 댐의 예측 유출량 및 수위를 산출하는 모형으로, 장기적인 수문기상정보를 획득하기 위해서는 장기예측 강수자료를 입력자료로 사용할 필요가 있다. 본 연구에서는 2014년 국내에 도입된 기상청의 계절예측시스템인 GloSea5(Global Seasonal Forecast System version 5) 예측 강수량 앙상블을 K-DRUM의 입력자료로 사용하는 프로그램을 개발하였으며, 이를 통해 산출된 예측 유출량 앙상블 자료를 기반으로 댐 운영자에게 수문기상정보를 제공하는 웹 기반 확률장기예보 활용 물관리 의사결정지원시스템을 함께 구축하였다. GloSea5의 예측 결과를 입력자료로 사용하기 위하여 대상 댐 유역에 대해 전처리 과정을 수행한 후 편의보정기법을 적용하여 예측 강수 앙상블 자료를 산출하였으며, 이를 K-DRUM에 입력하여 수행하여 예측 유출량을 산출하였다. 이 과정에서 편의보정된 강수량과 강우-유출모형에서 산정된 예측 유출량은 그래프와 테이블로 함께 표출할 수 있도록 하였다. 본 연구의 결과를 통해 시스템의 사용자는 예측 강수량과 유출량을 토대로 댐의 방류량을 조정함으로써 댐 수위 모의 운영을 수행할 수 있게 되어 장기적인 물관리 의사결정에 도움이 될 것으로 기대된다.
Different from other natural hazards including floods, drought advances slowly and spreads widely, so that the preparedness is quite important and effective to mitigate the impacts from drought. Evaluation and forecast the status of drought for the present and future utilizing the meteorological scenario for agricultural drought can be useful to set a plan for agricultural drought mitigation in agriculture water resource management. In this study, drought climate scenario model on the basis of historical drought records for preparing agricultural drought mitigation was developed. To consider dependency and correlation between various climate variables, this model was utilized the historical climate pattern using reference year setting of four drought levels. The reference year for drought level was determined based on the frequency analysis result of monthly effective rainfall. On the basis of this model, drought climate scenarios at Suwon and Icheon station were set up and these scenarios were applied on the water balance simulation of reservoir water storage for Madun reservoir as well as the soil moisture model for Gosam reservoir watershed. The results showed that drought climate scenarios in this study could be more useful for long-term forecast of longer than 2~3 months period rather than short-term forecast of below one month.
본 연구의 목적은 도시하천으로 복원된 청계천유역의 실시간 홍수예보를 위한 flow nomograph를 개발하고, 실측자료를 통해 flow nomograph의 적용성을 검토하는데 있다. 본 연구의 적용대상 지역인 청계천 유역은 높은 불투수율, 짧은 도달시간 및 복잡한 수문학적 특성을 갖고 있어 기존 강우-유출 모형에 의한 홍수예측 방법의 선행시간 확보 측면에서 실효성을 거두지 못하고 있는 실정이다. 이에 본 연구에서는 홍수예보 선행시간을 확보하기 위해 강우정보만으로도 홍수예보가 가능한 flow nomograph를 개발하였다. Flow nomograph는 강우강도, 강우지속시간 등의 강우변수와 유량, 수위간의 상관관계를 구한 것이다. 본 연구에서는 Flow nomograph 개발과정에서 예보 기준 설정을 위해 홍수예보 지점을 선정하여 지점별 기준 홍수위를 산정하였으며, 다양한 홍수사상을 반영하기 위해 가상 강우시나리오를 설정하여 강우조건별 강우강도와 강우지속시간을 산정하였다. 또한 수위-유량관계 곡선식을 이용하여 기준 홍수위에 따라 홍수량 범위를 결정하고, SWMM모형을 이용하여 강우조건에 따른 지점별 홍수량을 산정하여 예보지점별로 기준홍수 위에 따른 홍수량을 산정하였다. 산정된 강우 시나리오에 따른 강우정보와 기준 홍수위에 따른 홍수량을 이용하여 flow nomograph를 개발하였으며, 이를 실제 홍수사상에 적용하여 평가하였다. 평가 결과 청계천 유역에 대해 flow nomograph의 적용성이 높은 것으로 나타났다. 향후 청계천과 같은 도시하천유역의 홍수예측 방법으로 활용도가 높을 것으로 판단된다.
A watershed-river linked modeling system was developed to forecast the water quality, particularly weekly changes in chlorophyll-a concentration, of the Yeongsan River, Korea. Hydrological Simulation Program-Fortran (HSPF) and Environmental Fluid Dynamics Code (EFDC) were adopted as the basic model framework. In this study, the EFDC model was modified to effectively simulate the operational condition and flow of multi-functional weirs constructed in the main channel of rivers. The model was tested against hydrologic, water quality and algal data collected at the right upstream sites of two weirs in 2014. The mean absolute errors (MAEs) of the model calibration on the annual variations of river stage, TN, TP, and algal concentration are 0.03 ~ 0.10 m, 0.65 ~ 0.67 mg/L, 0.03 ~ 0.04 mg/L, and $9.7{\sim}10.8mg/m^3$, respectively. On the other hand, the MAE values of forecasting results for chlorophyll-a level at the same sites in 2015 range from 18.7 to $22.4mg/m^3$, which are higher than those of model calibration. The increased errors in forecasting are mainly attributed to the higher uncertainties of weather forecasting data compared to the observed data used in model calibration.
The propriety of the numerical model application was examined on Paldang resevoir and its inflow tributaries located in the center of the Korean peninsula and the long term water quality forecast of the oxygen profile was carried out in this syduy. The input data of the model was the capacity of the reservoir, catchment area, percolation, diffusion rate, vertical mixing rate, dissolution rate from the bottom of the reservoir, outflow of the resevoir, water quality measurement and meteorology data of the drainage basin, and the output result was the annual estimation value of the dissolved oxygen concentration and the biochemical oxygen demand. The modeling method is based on the measured or calculated boundary condition dividing the water area into several blocks from the macorscopic aspect and considering the mass balance in these blocks. As the result of the water quality forecast, it was expected that the water quality in Northern Han River and Paldang reservoir would maintain the recent level, but that the water quality in the Southern Han River and its inflow tributary would worsen below the grade 4 of the life environmental standard from around 2000 owing to the decrease of DO concentration and the increase of BOD concentration.
In this article, we use an open source software library: TensorFlow, developed for the purposes of conducting very complex machine learning and deep neural network applications. However, the system is general enough to be applicable in a wide variety of other domains as well. The proposed model based on a deep neural network model, LSTM (Long Short-Term Memory) to predict the river water level at Okcheon Station of the Guem River without utilization of rainfall - forecast information. For LSTM modeling, the input data is hourly water level data for 15 years from 2002 to 2016 at 4 stations includes 3 upstream stations (Sutong, Hotan, and Songcheon) and the forecasting-target station (Okcheon). The data are subdivided into three purposes: a training data set, a testing data set and a validation data set. The model was formulated to predict Okcheon Station water level for many cases from 3 hours to 12 hours of lead time. Although the model does not require many input data such as climate, geography, land-use for rainfall-runoff simulation, the prediction is very stable and reliable up to 9 hours of lead time with the Nash - Sutcliffe efficiency (NSE) is higher than 0.90 and the root mean square error (RMSE) is lower than 12cm. The result indicated that the method is able to produce the river water level time series and be applicable to the practical flood forecasting instead of hydrologic modeling approaches.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.