• Title/Summary/Keyword: Water Height

Search Result 2,139, Processing Time 0.03 seconds

Tube phonation in water for patients with hyperfunctional voice disorders: The effect of tube diameter and water immersion depth on bubble height and maximum phonation time (과기능적 음성장애 환자의 물저항발성: 튜브 직경과 물 깊이가 물거품 높이 및 최대발성지속시간에 미치는 영향)

  • Min Gyeong Kim;Seong Hee Choi;Jong-In Youn
    • Phonetics and Speech Sciences
    • /
    • v.15 no.2
    • /
    • pp.31-40
    • /
    • 2023
  • Tube phonation in water has been widely used for voice training among semi-occluded vocal tract (SOVT) exercises in which the patient bubbles with phonation keeping the tube submerged in water. This study aims to investigate the effect of tube diameter and water depth on bubble height and maximum phonation time (MPT) for patients with hyperfunctional voice disorders. Seventeen patients with hyperfunctional voice disorders were asked to bubble with sustained /u/ at the different inner diameters of tube (5, 7, and 10 mm), water depth (4, 7, and 10 cm). A water resistance phonation biofeedback system using a water height sensor was used for recording bubble height and MPT. The bubble height was significantly changed by the tube diameter while MPT was significantly changed with the tube diameter and water depth. Although the wider tube presented significantly lower bubble height for a given depth, relatively consistent bubble height was maintained. Depending on the water depth, the bubble height did not significantly differ for a given tube diameter. In addtion, MPT significantly decreased with water depth and a wider tube led significantly shorter MPT. A water level-driven water resistance biofeedback system provided useful information on bubble characteristics and vocal fold vibration depending on tube diameter and water depth. It can be useful to monitor the breath support during water resistance phonation for patients with hyperfunctional voice disorders.

The conditional risk probability-based seawall height design method

  • Yang, Xing;Hu, Xiaodong;Li, Zhiqing
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.6
    • /
    • pp.1007-1019
    • /
    • 2015
  • The determination of the required seawall height is usually based on the combination of wind speed (or wave height) and still water level according to a specified return period, e.g., 50-year return period wind speed and 50-year return period still water level. In reality, the two variables are be partially correlated. This may be lead to over-design (costs) of seawall structures. The above-mentioned return period for the design of a seawall depends on economy, society and natural environment in the region. This means a specified risk level of overtopping or damage of a seawall structure is usually allowed. The aim of this paper is to present a conditional risk probability-based seawall height design method which incorporates the correlation of the two variables. For purposes of demonstration, the wind speeds and water levels collected from Jiangsu of China are analyzed. The results show this method can improve seawall height design accuracy.

New procedure for determining equivalent deep-water wave height and design wave heights under irregular wave conditions

  • Kang, Haneul;Chun, Insik;Oh, Byungcheol
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.168-177
    • /
    • 2020
  • Many coastal engineering designs utilize empirical formulas containing the Equivalent Deep-water Wave Height (EDWH), which is normally given a priori. However, no studies have explicitly discussed a method for determining the EDWH and the resulting design wave heights (DEWH) under irregular wave conditions. Unfortunately, it has been the case in many design practices that the EDWH is incorrectly estimated by dividing the Shallow-water Wave Height (SWH) at the structural position with its corresponding shoaling coefficient of regular wave. The present study reexamines the relationship between the Shallow-water Wave Height (SWH) at the structural position and its corresponding EDWH. Then, a new procedure is proposed to facilitate the correct estimation of EDWH. In this procedure, the EDWH and DEWH are determined differently according to the wave propagation model used to estimate the SWH. For this, Goda's original method for nonlinear irregular wave deformation is extended to produce values for linear shoaling. Finally, exemplary calculations are performed to assess the possible errors caused by a misuse of the wave height calculation procedure. The relative errors with respect to the correct values could exceed 20%, potentially leading to a significant under-design of coastal or harbor structures in some cases.

The Effect of Column Height on Sludge-Water Interface Height Change Model (슬러지계면층높이변화모델에서 컬럼높이에 대한 영향)

  • Park, Suk Gyun;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.2
    • /
    • pp.265-272
    • /
    • 2006
  • While sludge settles down in a column, sludge settling characteristic is influenced by effect parameters, interparticle force, wall effect etc. As the height of a column changes, the settling velocity of sludge-water interface changes, too. At lower sludge concentration, particular effect was not observed by the difference of column height, however it was observed that settleability of sludge was greatly influenced by column height when sludge settling was poor or sludge concentration was high. It is therefore required to consider the effect of column height when the power model for sludge interface settling is established. In the tests, there was hardly any $SVI_{ts}$(SVI after "t" minutes) difference in each column after 10min at $1.5kg/m^3$ of sludge concentration. When sludge concentration was at $2.5kg/m^3$, $SVI_{ts}$ tended to be constant after 20min. At $3.5kg/m^3$, $SVI_{ts}$ increased to 30minuets. The purpose of this work is to establish the correction factor that is able to compensate the errors derived from each different height of column.

Generalization of Vertical Plume Despersion in the concective Boundary Layer at Long Distances on Mesoscale (중거리에서 대류경계층 연직방향 plume 확산의 일반화)

  • 서석진
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.2
    • /
    • pp.141-150
    • /
    • 2000
  • In order to genralize the vertical dispersion of plume at long distances on mesoscale over complex terrain dispersion coefficients data have been obtained systematically according to lapsed time after release by using a composite turbulence water tank that simulates convective boundary layer. Dispersion experiments have been carried out for various combined conditions of thermal turbulence intensity mechanical turbulence intensity and plume release height at slightly to moderately unstable conditions. Results of tracer dispersion experiments conducted using water tank camera and image processing system have been converted into atmospheric dispersion data through the application of similarity law. The equation $\sigma$z/Zi=aX/(b+c X2)0.5 where $\sigma$2; vertical dispersion coefficient zi : mixing height X : dimen-sionaless downwind distance was confirmed to be an appropriate and general equation for expressing $\sigma$2 variation with turbulence intensity and plume release height, The value of "a" was found to be principally affected by mechanical turbulence intensity and that of "b" by mechanical turbulence intensity and release height. It was confirmed that the magnitude of "c" varies with release height. Results of water tank experiments on the relationship of $\sigma$2 vs downwind distance x have been compared with actual atmospheric dispersion data such as CONDORS data and Bowne's nomogram Operating conditions of a composite turbulence water tank for simulating the field turbulence situations of CONDORS experiments and Bowne's $\sigma$2(x) nomogram for suburban area have also been investigated in terms of water temperature difference between convection water tank and bottom plate heating tank grid plate stroke mixing water depth length scale and velocity scale. Moreover the effect of mechanical turbulence intensity on vertical dispersion has been discussed in the light of release height and downwind distance. height and downwind distance.

  • PDF

Prediction of Sludge-Water Interface Height Change in Batch Column (Batch Column에서의 슬러지계면층 높이변화 예측)

  • Park, Suk Gyun;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.1
    • /
    • pp.156-163
    • /
    • 2006
  • While sludge is settling in batch column, sludge concentration becomes high. Because the characteristic of sludge settling changes in function of time due to the sludge concentration change, the sludge settling velocity changes too. Also, because the sludge settling characteristic is influenced by a physical characteristic of sludge and a column height etc, it is difficult to exactly measure the sludge settling characteristic. Although the sludge volume indexes, SVI, SSVI and $SSVI_{3.5}$, are used to predict sludge settling characteristic, these indexes are not reliable values. Because the previously established models for sludge settling velocity predict the sludge settling velocity only, it is difficult to predict sluge-water interface height by using those models. The purpose of this experiment is to establish the empirical model which predicts the sludge interface height change with respect to the sludge physical characteristic and the settling condition.

Investigation into circulation of ground water by air sparging (Air sparging에 의한 지하수 순환에 관한 연구)

  • 이준희;강구영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.232-235
    • /
    • 1998
  • Air sparging system is a kind of in-situ bioremediation method in the contaminated ground water. When Air sparging, the both of water circulation and oxygen transfer happend in the same time. The hydraulic differential head is zero at the middle height of well, is negative below the height and is possitive above the height. Hydroraulic head gradient is proportioned to air superficial velocity in the well. But over 24m/min of the superficial velocity, the hydraulic head gradient increase little.

  • PDF

a biologically inspired small-scale water jumping robot (작은 스케일의 생체 모방 수상 점프 로봇)

  • Shin, Bong-Su;Kim, Ho-Young;Cho, Kyu-Jin
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1427-1432
    • /
    • 2008
  • This paper describes the locomotion of a water jumping robot which attempts to emulate the fishing spider’s ability to jump on the water surface. While previous studies of the robots mimicking arthropods living on water were focused on recreating their horizontal skating motions, here we aim to achieve a vertical jumping motion. The robot jumps by pushing the water surface with rapidly released legs which were initially bent. The motion is triggered with a latch driven by the shape memory alloy actuator. The robot is capable of jumping to the maximum height of 26mm. Jumping efficiency, defined the maximum jumping height on water over the maximum jumping height on rigid ground, is 0.26 This work represents a first step toward robots that can locomote on water with superior versatility including skating and jumping.

  • PDF

Characteristics of Wave Propagation by Water Level Conditions at Wando Sea Area: Numerical Modeling (완도 해역의 해수면 조건에 따른 파랑 변형 특성)

  • Jeon, Yong-Ho;Yoon, Han-Sam;Kim, Dong-Hwan;Kim, Won-Seok;Kim, Heon-Tae
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.25 no.1
    • /
    • pp.1-11
    • /
    • 2013
  • The aim of this study was estimated the characteristics of the wave propagation by the water level conditions using a numerical modeling method at the Wando sea area. For three cases numerical simulation on the condition of incident and incoming of the deepwater design wave and the season normal wave, the spatial distribution of the incident wave at study area were investigated. And the calculated numerical modeling results were compared with measured field wave data. According to on-site wave data measured for 18 days, the range of the significant wave height and period were 0.10~1.14 m, 4.35~8.74 sec, respectively, and the maximum wave height were 0.15~1.66 m. From the results of numerical model for offshore design wave incident, the wave height attacked from Southern-East direction at this study area were over maximum 10.5 m because of rapidly change of water depth. Numerical modeling by three water level conditions of Approxmate Lowest Low Water Level(Approx. L.L.W), Mean Sea Level(M.S.L) and Approximate Highest High Water Level(Approx. H.H.W) were practiced. From the results for the case of Approx. H.W.L, variations of wave height at the back area of islands were about 1.6 m at maximum value for the case of deepwater design wave incoming. The significant wave heights of winter season were bigger than summer under normal wave condition, the incident wave height over 5.5 m decreased by shielding effect of islands. The change of maximum wave height at summer season were distinct than winter and was about 1.2 m and 0.8 m, respectively.

Correlations and Regression Analysis Between Reservoir Water Quality Parameters (농업용저수지 수질인자간 상관성 및 획귀분석)

  • Choi, Eun-Hee;Park, Youmg-Suk
    • KCID journal
    • /
    • v.18 no.1
    • /
    • pp.25-32
    • /
    • 2011
  • In order to effectively manage the reservoir, reservoir water quality management should be based on physicochemical and configurational characteristics. In this research, correlation between factors affecting the reservoir water quality was examined. Chl-a and COD shows the highest positive correlation. Chl-a and T-P also has a high positive correlation, however Chl-a and T-N show lower correlation relatively. Even though T-N is an important factor for phytoplankton growth which increase Chl-a concentration, corelation of Ch1-a and T-N shows that enough nitrogen in the reservoir isn't no longer limiting factor. The age of reservoir can cause of increasing COD and SS. Embankment height and elevation of reservoirs shows strong negative correlation to water quality. That means reservoir which is higher embankment height and locate in higher elevations is less contaminated. Regression expression was derived with Chl-a and water quality parameters, and height of reservoir. Finally Chl-a was simulated using regression expression and it was a good approach to predict the Chl-a concentration.

  • PDF