• 제목/요약/키워드: Water Flux

검색결과 1,887건 처리시간 0.024초

Effects of sodium hydroxide cleaning on polyvinylidene fluoride fouled with humic water

  • Jang, Yoon-sung;Kweon, JiHyang;Kang, Min-goo;Park, Jungsu;Jung, Jae Hyun;Ryu, JunHee
    • Membrane and Water Treatment
    • /
    • 제8권2호
    • /
    • pp.149-160
    • /
    • 2017
  • This study investigated effects of NaOH cleaning on the intrinsic permeability of polyvinylidene fluoride (PVDF) membranes and flux recoveries and membrane resistances under various conditions encountered during ultrafiltration in water treatment plants. The NaOH cleaning using 10,000 mg/L NaOH led to discoloration of PVDF membranes and had little effect on water flux. The NaOH cleaning was efficient in removing the fouling layer caused by humic water. However, long filtration induced a fouling layer that was not removed easily by NaOH cleaning. The lower temperature during filtration yielded rapid increases in transmembrane pressure and decreases in NaOH cleaning efficiency. The alkaline cleaning of PVDF changed the membrane properties such as the hydrophobicity and morphology. Foulant properties, operational conditions such as temperature, and chemical agents should be considered for cleaning strategies for PVDF applied in water treatment.

침지형 MF 중공사막을 이용한 하수 2차 처리수의 재이용 연구 (Treatment of Secondary Municipal Wastewater by Submerged Hollow Fiber MF Membranes for Water Reuse)

  • 현승훈;김응도;홍승관;안원영;임성균;김건태
    • 상하수도학회지
    • /
    • 제19권1호
    • /
    • pp.47-52
    • /
    • 2005
  • This study was conducted to evaluate the performance of submerged hollow fiber MF processes to treat secondary wastewater for water reuse. Specifically, membrane productivity and filtrate water quality were investigated under various operating conditions (i.e. flux, recovery, and backwash rate) at pilot-scale. Membrane fouling became more severe with increasing flux and recovery, suggesting that low flux operation (< 25 LMH) was desirable. At high flux operating(> 37.5 LMH), increasing backwash rate showed only limited success. The biofouling, quantified by PEPA and BFHPC, was also significant in wastewater reclamation, and biogrowth control by chlorine, were necessary to improve membrane productivity. Filtrate water qualities are in good compliance with water reuse regulations regardless of operating conditions (flux, recovery and backwash rate). Particle (e.g. turbidity) removal ranged from 89 to 98%, while only 11 to 21% of organics (e.g. NPDOC) were removed by MF membrane. Only small improvement in biostability (e.g. AOC) was achieved by MF system, and thus, without post disinfection, significant microorganisms might be present in the filtrate due to regrowth. Lastly, in order to further investigate pathogen removal, controlled microbial challenge tests were performed by monitoring Giardia, Cryptosporidium, bacteria and virus, and showed relatively good microbial removal.

Preparation of high-performance nanofiltration membrane with antioxidant properties

  • Yu, Feiyue;Zhang, Qinglei;Pei, Zhiqiang;Li, Xi;Yang, Xuexuan;Lu, Yanbin
    • Membrane and Water Treatment
    • /
    • 제13권4호
    • /
    • pp.191-199
    • /
    • 2022
  • In industrial production, the development of traditional polyamide nanofiltration (NF) membrane was limited due to its poor oxidation resistance, complex preparation process and high cost. In this study, a composite NF membrane with high flux, high separation performance, high oxidation resistance and simple process preparation was prepared by the method of dilute solution dip coating. And the sulfonated polysulfone was used for dip coating. The results indicated that the concentration of glycerin, the pore size of the based membrane, the composition of the coating solution, and the post-treatment process had important effects on the structure and performance of the composite NF membrane. The composite NF membrane prepared without glycerol protecting based membrane had a low flux, when the concentration of glycerin increased from 5% to 15%, the pure water flux of the composite NF membrane increased from 46.4 LMH to 108.2 LMH, and the salt rejection rate did not change much. By optimizing the coating system, the rejection rate of Na2SO4 and PEG1000 was higher than 90%, the pure water flux was higher than 40 LMH (60psi), and it can withstand 20,000 ppm.h NaClO solution cleaning. When the post treatment processes was adjusted, the salt rejection rate of NaCl solution (250 ppm) reached 45.5%, and the flux reached 62.2 LMH.

비식생 갯벌 표층과 대기의 이산화탄소 플럭스 계절 변동 분석: 벌교 갯벌 (Seasonal Variation of Carbon Dioxide Flux between Soil Surface Layer and Atmosphere in Unvegetated Tidal Flat : Beolgyo Tidal Flat)

  • 박경덕;강동환;소윤환;조원기;김병우
    • 한국환경과학회지
    • /
    • 제32권4호
    • /
    • pp.267-276
    • /
    • 2023
  • In this study, we analyzed seasonal variations in carbon dioxide fluxes, concentrations, and soil temperatures over three years in unvegetated tidal flats in the Beolgyo area. We also investigated the correlations between carbon dioxide fluxes and influencing factors. The average carbon dioxide flux was positive in summer and autumn but negative in winter and spring. A positive correlation was observed between carbon dioxide flux and soil temperature in spring whereas a negative correlation was noted in summer. In summer and autumn, as the soil temperature increased, the carbon dioxide flux decreased. In contrast, in spring and winter, as the soil temperature decreased, the carbon dioxide flux increased. Overall, this study reveals the significant influence of soil temperatures on carbon dioxide fluxes between the surface layer of the tidal flat and atmosphere.

복류수를 이용한 한외여과공정의 장기운전 평가 (Long Term Evaluation of UF Membrane process using River-bed Water)

  • 김충환;임재림;강석형;김수한
    • 상하수도학회지
    • /
    • 제22권4호
    • /
    • pp.429-436
    • /
    • 2008
  • Membrane system has been increasingly considered as a safe and cost-effective water treatment process especially in case of small scale water works. This research is a basis of membrane application in water works through a long period test with obtaining operation skills and evaluation of water quality and cost competitiveness. For the research, the UF membrane system was installed in small water treatment plant that uses river-bed water as raw water. The system was consisted of 2 stage membrane and operated in constant flow mode (Flux: 1.5, 1.0, 0.9, 0.6). In each different flux condition, TMP trends were showed better results at lower flux condition. And through the high flux condition test, it is certified that membrane system could deal with breakdown of one stage. Water quality of permeate was satisfied the water quality standards especially turbidity. To know what mainly causes fouling on membrane, the test by membrane with several cleaning agents and EDX analysis have done in lab. Through the tests, ferrous concentration in raw water, backwashing water and membrane surface etc. was high and it causes fouling inside and outside of membrane. So acid cleaning using organic acid such as oxalic acid is necessary in Chemical in Place (CIP). At the economical aspect the electrical cost of membrane system is higher than that of slow sand filtration but labor cost can be reduced by automation. However, the use of labor should be determined considering effectiveness and stability of operation. Because during the operation, there are several breakdown such as electrical shock by lightning, water drop in summer, etc.

고라니(Hydropotes inermis)의 분변이 습지 토양의 CO2 flux에 미치는 영향 (Study on effect on CO2 flux of wetland soil by feces of Korean water deer(Hydropotes inermis))

  • 박효민;전승훈;이상돈
    • 한국습지학회지
    • /
    • 제17권3호
    • /
    • pp.283-292
    • /
    • 2015
  • 토양으로부터 방출되는 $CO_2$의 양은 전 지구적 지구 탄소 순환에서 가장 큰 방출 중 하나로 알려져 있다. 특히 토양 내 미생물의 유기물질 분해 과정에 의해 방출되는 이산화탄소의 양은 토양의 탄소 저장량을 장기적으로 결정하는 요인이 되므로 그 양을 정량화 하는 것이 필요하다. 본 연구는 토양에서 고라니의 분변이 $CO_2$ 배출에 미치는 영향을 파악하기 위해 수행하였다. 그리고 고라니의 분변이 토양의 $CO_2$ 배출에 주는 영향과 토지의 이용에 따라 변화하는 $CO_2$ flux를 정량화 하였다. 그 결과 고라니 분변 내 많은 유기물질은 토양 미생물의 활성화에 영향을 주고 그로 인해 토양의 호흡 및 토양 내 물리 화학적인 변화가 발생되어 토양의 유기물 함량이 서로 다르게 나타남을 확인할 수 있었다. 특히 4개 지역의 토양(경작지, 휴경지, 버드나무 군락, 갈대습지)의 C/N ratio와 $CO_2$ flux는 분변의 유무와 통계적으로 매우 유의미한 상관 관계를 나타냈으며(P<0.01), 분변의 영향을 받은 토양의 $CO_2$ flux는 분변의 영향을 받지 않은 토양보다 2-20배 더 높은 것으로 나타났다. 이 연구는 고라니의 분변이 토양에 주는 영향과 야생동물 분변을 이용한 토양 물질 순환 연구를 통해 육상 생태계 및 토양권의 물질 순환과 그 영향의 정도를 정량화 하였다는 점에서 큰 의의가 있는 연구이다.

폐석분 및 바텀애시를 사용한 인공경량골재의 융제(Flux) 종류에 따른 밀도 및 흡수율 특성 (Density and Water Absorption Characteristics of Artificial Lightweight Aggregates containing Stone-Dust and Bottom Ash Using Different Flux)

  • 한민철;신재경
    • 한국건설순환자원학회논문집
    • /
    • 제7권3호
    • /
    • pp.49-55
    • /
    • 2012
  • 본 연구에서는 인공경량골재의 주요 물성인 밀도 및 흡수율의 성능 향상을 위하여 융제 종류 및 첨가율에 따른 밀도 및 흡수율 특성을 검토하였다. 실험결과, 화학제품의 융제 사용에 관한 특성으로, $Na_2CO_3$$CaSO_4$는 경우 낮은 소성온도에서 소성이 가능하나, 흡수율이 증가하였고, $CaCO_3$, NaOH, $Fe_2O_3$는 첨가율이 증가할수록 흡수율은 낮아졌으나, 절건밀도가 높아지는 것으로 나타나 융제로서 부적합하였다. $Na_2SO_4$의 사용한 경우에는 절건밀도 $1.35{\sim}1.50g/cm^3$와 상대적으로 낮은 흡수율로 융제로서 가장 적합하였다. 산업부산물의 융제 사용에 관한 특성으로 유리연마 슬러지는 절건밀도 $1.45{\sim}1.55g/cm^3$ 및 흡수율 9~12 %로 흡수율이 높게 나타났다. 고로슬래그 미분말은 첨가율이 증가할수록 밀도는 높아지고 흡수율은 낮아지는 것으로 나타났다. 산화슬래그는 첨가율 10 %에서 절건밀도 $1.46g/cm^3$, 흡수율 8,5 %로 낮은 절건밀도와 흡수율을 갖는 양질의 인공경량골재를 제조할 수 있었다.

  • PDF

유도용액으로 혼합비료를 사용한 정삼투식 해수담수화에서 담수화 성능에 대한 유도용액 농도의 영향 (The Effect of Draw Solution Concentration on Forward Osmosis Desalination Performance Using Blended Fertilizer as Draw Solution)

  • 정남조;김승건;김동국;이호원
    • 멤브레인
    • /
    • 제23권5호
    • /
    • pp.343-351
    • /
    • 2013
  • 혼합 비료를 유도용액으로 하는 정삼투식 해수담수화에서 담수화 성능에 대한 유도용액 농도의 영향을 조사하였다. 혼합비료용액(DS)의 농도가 증가함에 따라 수투과선속은 거의 선형적으로 증가하였으나, PR (performance ratio)은 감소하였다. 또한 혼합비료용액의 농도가 600 g/L일 때, 해수 및 탈이온수를 각각 공급용액으로 하였을 경우 각각의 PR은 5.39 및 6.50이었다. 혼합비료용액의 농도가 증가함에 따라 N, P 및 K의 역용질선속은 거의 선형적으로 증가하였으나, 비역용질선속은 감소하였다. 역용질선속과 비역용질선속은 모두 질소(N) > 칼륨(K) > 인(P) 순으로 높게 나타났다.

침지형 분리막 여과공정에서 운전조건에 따른 임계플럭스에 대한 연구 (Effects of Operation Parameters on Critical Flux During Submerged-Type Membrane Filtration System)

  • 김준성;안규홍
    • 상하수도학회지
    • /
    • 제16권6호
    • /
    • pp.717-725
    • /
    • 2002
  • A bench-scale submerged-type membrane filtration system (SMFS) was constructed to study a feasibility of membrane filtration for solid-liquid separation in water and wastewater treatment processes. In the case of applying the SMFS to a biological wastewater treatment process, so-called membrane bioreactor, aeration underneath membrane modules is usually employed in order to provide oxygen demand for microbial growth as well as to control membrane fouling. A study was investigated the effects of operation parameters by aeration intensity, feed concentration, foulant type and airlift pore size on critical flux. Critical flux tends to increase with aeration rate. Optimal aeration flow rate was found to be 10 L/min/module. Feed concentration and foulant type has a significant effect on membrane fouling and filtration performance. But downward position and pore size of airlift has no a significant effects on membrane fouling and filtration performance.

충돌수분류의 천이 및 막비등열전달에 관한 연구 (An Experimental Study on Transition and Film Boiling Heat Transfer of Impinging Water Jet)

  • 엄기찬;서정윤
    • 대한설비공학회지:설비저널
    • /
    • 제14권2호
    • /
    • pp.87-97
    • /
    • 1985
  • Experimental measurements of the heat flux to a upward impinging water jet on high heated test surface were obtained in the transition and film boiling regimes. Test variables were nozzle outlet velocity, subcooled water temperature and height of supplementary water. Boiling curve of this investigation is similar to a pool boiling curve, but it has one or two cap-shaped peaks in the transition regime. In the film boiling regime, the heat transfer rates are increased along with the increment of nozzle outlet velocity and subcooled temperature. There is optimum height of supplementary water for the augmentation of heat transfer Generalized correlations of boiling heat transfer are presented for maximum heat flux, minimum heat flux and $q_c$ at each supplementary height.

  • PDF