• Title/Summary/Keyword: Water Flow

Search Result 10,678, Processing Time 0.042 seconds

Watershed Selection for Diffuse Pollution Management Based on Flow Regime Alteration and Water Quality Variation Analysis (유황분석과 수질변화 평가를 통한 비점오염원 관리대상지역 선정방법 연구)

  • Jung, Woohyeuk;Yi, Sangjin;Kim, Geonha;Jeong, Sangman
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.2
    • /
    • pp.228-234
    • /
    • 2011
  • The goal of water quality management on stream and watershed is to focus not on discharged loads management but on a water quality management. Discharged loads management is not goal of water quality management but way for perform with total maximum daily loads management. It is necessary to estimate the relation between non-point source with stromwater runoff (NPSSR) and water quality to select a watershed where it is required to manage NPSSR for water quality improvement. To evaluate the effects of NPSSR on stream's water quality, we compare the aspects of water quality in dry and wet seasons using flow duration curve analysis based on flow rate variation data by actual surveying. In this study we attempt to quantify the variation characteristic of water quality and estimate the Inflow characteristic of pollution source with water quality and flow rate monitoring on 10 watersheds. We try to estimate water quality and flow rate by regression analysis and try again regression analysis with each high and low water quality data more than estimations. An analysis of relation between water quality and flow rate of 10 watersheds shows that the water quality of the Nonsan and the Ganggyeong streams had been polluted by NPSSR pollutants. Other eight streams were important point source more than NPSSR. It is wide variation range of $BOD_5$ also high average concentration of $BOD_5$. We have to quantify water quality variation by cv1 in wet season and cv365 in dry season with comparing the estimate of high water quality and low water quality. This method can be used to indicator for water quality variation according to flow rate.

Transitions between Uncontrolled Submerged and Uncontrolled Free in Low-Head Ogee Spillway

  • Hong, Seung Ho;Hong, Da Hee;Song, Yang Heon;Lee, Jeong Myeong;Jegal, Jin A
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.155-155
    • /
    • 2022
  • Low head, ogee spillways is popularly used to defense against floods as well as to provide water for irrigation. Spillway is also used to assess compliance with water quality regulations by controlling amount of discharge to the downstream of a channel. For the purpose of water resource management and/or environmental aspects as explained above, the flow discharge through spillways need to be correctly rated as a function of geometry and hydraulic variables. Typically, four flow conditions are encountered during the operation of spillway: (a) uncontrolled free flow (UF); (b) uncontrolled submerged flow (US); controlled free flow (CF); and controlled submerged flow (CS), and each condition has a unique rating equation. However, one of the tricky part of the spillway operation is finding correct flow type over the spillway because structures can operate under both submerged and free flow conditions, and the types are continuously changing over time depending on the amount of discharge, head water and tail water elevation. Quite obviously, if the wrong rating curve relationship is applied because of misjudgment of the flow type due to a transition, a serious error can occur. Thus, an hydraulic model study of one of spillway structure located in South Florida was conducted for the purpose of developing transition relationships. In this presentation, US to UF transition is highlighted.

  • PDF

Analysis of Variation for Drainage Structure with Flow Direction Methods Based on DEM

  • Meiyan, Feng;Kahhoong, Kok;Kim, Joo-Cheol;Kwansue, Jung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.325-325
    • /
    • 2018
  • The main purpose of this study is to suggest the more reliable flow direction methods within the framework of DEM by investigating the existing methodologies. To this end SFD(single flow direction method), MFD(multiple flow direction method) and IFD(Infinite flow direction method) are applied to determination of flow direction for water particles in Jeonjeokbigyo basin, and then assessed with respect to the variation of flow accumulation. As the main results the different patterns of flow accumulation are found out from each application of flow direction methods. As the flow dispersion increases on DEM contributing areas to outlet grow in sequence of SFD, IFD, MFD but contribution of individual pixels into outlet decreases. Especially MFD and IFD tend to make additional hydrologic abstraction from rainfall excess due to the flow dispersion within flow paths on DEM. Based on parameter estimation for power law distribution by maximum likelihood flow accumulation can be thought of as scale invariance factor. Combination of several flow direction methods could give rise to the more realistic water flow on DEM through separate treatment of flow direction methods for dispersion and aggregation effects of water flow within different topographies.

  • PDF

A Study on the Performance of an Absorption Heat Transformer with Process Simulation (프로세스 시뮬레이션에 의한 제 2종 흡수식 열펌프 성능에 관한 연구)

  • Cho Seung Yon;Kim Young in
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.16 no.3
    • /
    • pp.295-304
    • /
    • 1987
  • The purpose of this study is to develop a computer model for simulating the water-lit hium bromide absorption heat transformer (AHT) Including all major components and to find the flexibility in operation. The effect of source hot water temperature, cooling water temperature, useful hot water flow rate, cooling water flow rate and evaporator circulation flow rate were investigated. The coefficient of performance (COP), temperature boost $({\Delta}T\;=\;T_A\;-\;Ti)$ and concentration variations can be predicted. The performance study indicates that the performance of AHT increases for the waste hot water temperature increasing and with a decrease of the cooling water temperature. The effect on performances of useful hot water flow rape is significant except on temperature boost. Also the effects on performance of cooling water flow rate and evaporator circulation flow rate are small. It is shown that the computer program is valuable to predict the performance of absorp-tion heat transformer units at various working corditions.

  • PDF

Methodology for the Identification of Impaired Waters Using LDC for the Management of Total Maximum Daily Loads (오염부하지속곡선(LDC)을 이용한 수질오염총량관리 단위유역 목표수질 달성여부 평가방법)

  • Park, Jun Dae;Oh, Seung Young
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.5
    • /
    • pp.693-703
    • /
    • 2012
  • Load Duration Curve(LDC) is a useful tool for analyzing water quality characteristics under various stream flow conditions. This study investigated the methods to identify impaired waterbodies in the assessment of water quality goal attainment by using LDC for the management of Total Maximum Daily Loads (TMDLs). Three methods were proposed. Non-typical regime exclusion method is a method to exclude water quality observations in the non-typical extreme flow conditions in order to minimize the influence of non-ordinary water quality. Flow regime weighted average method is a method to calculate weighted mean water quality instead of arithmetic mean in order to consider water characteristics properly on stream flow regime in addition to the effect of Non-typical regime exclusion method. Load exceeded interval comparison method is a method to compare the intervals between the attained and non-attained load duration periods on the LDC. The assessment of water quality goal attainment can be performed more reasonably and precisely considering water quality variations on stream flow conditions by applying these proposed methods.

A Hydrological Study on Sources for Water Resoources Development in Korea. (우리나라 수자원의 근원에 대한 수문학적연구)

  • 박성우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.12 no.4
    • /
    • pp.2063-2077
    • /
    • 1970
  • The Purpose of this study is to give the hydrologically basic data for the development of water resources in Korea and a quantity of daily average precipitation and its frequency in a year are investigated to study the presumption which is affected to river flow. Characteristics of precipitation is poor as source of water resources compared with its efficiency. So, because of such characteristics of precipitation, river flow also is in harmony and distribution of river flow comes to the result of irregularity, that is, range of river coefficiet between the quantity of maximum river flow and others river flow is big, and it is insufficient as source of water resources. Yearly river flow being expressed by daily unit indicates the ratio(%) of distribution to total yearly river flow, and the model of hydrograph is drawn up. The gives the basis to make yearly water balance sheet. This study is not completed, yet but in forth-coming days, the water will try continuously to give more correct basis for the development of water resources according to a great deal of data.

  • PDF

Low-flow simulation and forecasting for efficient water management: case-study of the Seolmacheon Catchment, Korea

  • Birhanu, Dereje;Kim, Hyeon Jun;Jang, Cheol Hee;ParkYu, Sanghyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.243-243
    • /
    • 2015
  • Low-flow simulation and forecasting is one of the emerging issues in hydrology due to the increasing demand of water in dry periods. Even though low-flow simulation and forecasting remains a difficult issue for hydrologists better simulation and earlier prediction of low flows are crucial for efficient water management. The UN has never stated that South Korea is in a water shortage. However, a recent study by MOLIT indicates that Korea will probably lack water by 4.3 billion m3 in 2020 due to several factors, including land cover and climate change impacts. The two main situations that generate low-flow events are an extended dry period (summer low-flow) and an extended period of low temperature (winter low-flow). This situation demands the hydrologists to concentrate more on low-flow hydrology. Korea's annual average precipitation is about 127.6 billion m3 where runoff into rivers and losses accounts 57% and 43% respectively and from 57% runoff discharge to the ocean is accounts 31% and total water use is about 26%. So, saving 6% of the runoff will solve the water shortage problem mentioned above. The main objective of this study is to present the hydrological modelling approach for low-flow simulation and forecasting using a model that have a capacity to represent the real hydrological behavior of the catchment and to address the water management of summer as well as winter low-flow. Two lumped hydrological models (GR4J and CAT) will be applied to calibrate and simulate the streamflow. The models will be applied to Seolmacheon catchment using daily streamflow data at Jeonjeokbigyo station, and the Nash-Sutcliffe efficiencies will be calculated to check the model performance. The expected result will be summarized in a different ways so as to provide decision makers with the probabilistic forecasts and the associated risks of low flows. Finally, the results will be presented and the capacity of the models to provide useful information for efficient water management practice will be discussed.

  • PDF

Effects of Starvation, Water Temperature, and Water Flow on the Metamorphosis of Leptocephalus of Japanese Eel Anguilla japonica (절식, 수온 및 유속이 극동산 뱀장어(Anguilla japonica) 렙토세팔루스의 변태 유도에 미치는 영향)

  • Kim, Dae-Jung;Lee, Nam-Sil;Kim, Kyung-Kil;Chang, Dae-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.5
    • /
    • pp.597-602
    • /
    • 2014
  • We determined the effects of starvation, water temperature, and water flow on the onset of metamorphosis in leptocephali of the Japanese eel Anguilla japonica. Leptocephali larger than 50 mm (ca. 200 days old) were reared in 10-L tanks under different feeding, water temperature, and water flow regimes. Fasted leptocephali metamorphosed earlier and faster than did the fed ones. Metamorphosis was faster in the high water flow tank (1.2 L/min) than in the tank with flow at 0.6 L/min. The duration of metamorphosis was slightly shorter at $26^{\circ}C$ than at $23^{\circ}C$. To conclude, starvation induced the metamorphosis of artificially produced leptocephali larger than 50 mm TL. Increased water flow and water temperature both appear to induce and shorten metamorphosis.

Study on decentralized options of the in-stream flow for restoring the Gyobang cheon: application of the Urban Volume and Quality (UVQ) model to examine feasibilities in water quantity and quality (교방천 복원을 위한 분산형 유지유량 확보 방안 연구 (I): 수량.수질 타당성 검토를 위한 도시 물순환 모형 적용)

  • Shin, Sang-Min;Choi, Go-Eun;Lee, Sang-Eun;Park, Hee-Kyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.699-706
    • /
    • 2011
  • This study has a purpose of examining technical feasibility of supplying the in-stream flow for the Gyobang cheon by using treated water from small wastewater treatment facilities as a decentralized option. To do this, the water and contaminant flow in study areas of the Gyobang cheon are defined from the context of the integrated urban water cycle, and analyzed by using the Urban Volume and Quality (UVQ) model. First, the UVQ model was built for the study areas of the Gyobang cheon and calibrated with observation data. Second, the decentralized options of the in-stream flow was explored with consideration of availability of water sources. The UVQ simulation then led to selecting the best option which would meet the criteria of water quantity and quality. It was finally concluded that using water sources out of study areas 1 and 2, adjoining the upper part of the Gyobang cheon, in the decentralized manner can be a feasible option for in-stream flow. It also seems that the UVQ model is useful to understand the water cycle in study areas of the Gyobang cheon.

THE ANALYTIC ANALYSIS OF THE CORE INJECTION COOLING FLOW RATE FOR EMERGENCY WATER SUPPLY SYSTEM IN HANARO (하나로 비상 보충수 공급계통의 노심 주입 냉각유량 해석)

  • Park Yong-Chul;Kim Bong-Soo;Kim Kyung-Ryun;Wu Jong-Sub
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.39-44
    • /
    • 2005
  • In HANARO, a multi-purpose research reactor of 30 MWth, the emergency water supply system consists essentially of an emergency water storage tank located in the level of about thirteen meter (13 m) above the reactor core, a three inch ('3\%') diameter water injection pipe line including injection valves from the tank to the reactor cooling inlet pipe and a test loop to do periodic system performance test. When the water level of the reactor pool comes down to the extremely low due to a loss of reactor pool water accident the emergency water stored in the tank should be fed to the core by the gravity force and at that time the design flow rate is eleven point four kilogram per second (11.4 kg/s). But it is impossible periodically to measure the injection flow rate under the emergency condition because the normal water level should be maintained during the reactor operation. This paper describes a flow network analysis to simulate the flow rate under the emergency condition. As results, it was confirmed through the analysis results that the calculated flow rate agrees with the design requirement under the emergency condition.

  • PDF