• Title/Summary/Keyword: Water Distribution

Search Result 6,933, Processing Time 0.035 seconds

Determine the return period of flash floods by combining flash flood guidance and best fit distribution

  • Duong, Ngoc Tien;Kim, Jeong-Bae;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.362-362
    • /
    • 2020
  • Flash flood is a dangerous weather phenomenon, affecting humans and the economy. The identification, forecast of the changing trend and its characteristics are increasingly concerned. In the world, there have many methods for determining the characteristics of flash floods, in which flash flood guidance (FFG) is a fast, effective and widely used method. The main source of flash floods is short-term rainfall. In this study, we used the data of cross-sectional measurement at the tributaries and the hourly rain data from the automatic rainfall measurement stations in the Geum river basin. Besides, we use a combination of the flash flood guidance and the best fit distribution function to estimate the repeatability of flash floods for head-water catchments in Geum river basin. In which, FFG determines the threshold of rainfall for flash floods. The study has determined the best hourly rainfall distribution function for the Geum river basin and estimated the maximum rainfall of 1hr according to the return periods.

  • PDF

Optimal Rechlorination for the Regulation of Chlorine Residuals in Water Distribution Systems (배수관망의 잔류염소 평활화를 위한 최적 재염소 처리)

  • Yoon, Jae-Heung;Oh, Jung-Woo;Choi, Young-Song
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.2
    • /
    • pp.90-98
    • /
    • 1998
  • The optimal rechlorination in water distribution systems was investigated by incorporating optimization techniques into a numerical water quality model. For a hypothetical system that consists of 10 junctions including a storage tank and 12 links, the bulk ($k_b$) and pipe-wall ($k_w$) decay-rate constants of chlorine residual are assumed to be 2.0 1/day and 1.5 m/day, respectively. It was also assumed that the lower and upper limits of chlorine residual in the network are 0.2 mg/L and 0.6 mg/L. When the chlorine source is only the storage tank (without rechlorination), the high levels of chlorine residual appear near the storage tank to maintain the chlorine residuals above the lower limit over the junctions. On the other hand, the chlorine residuals in the network are distribute within the desirable range (0.2 - 0.6 mg/L) after the optimal rechlorination through five injection sites including the storage tank. In case of a real water distribution system that comprises 28 junctions including a clear well and 27 links, the bulk and pipe-wall decay-rate constants are 0.3 1/day and 0.2 m/day, respectively. Before rechlorination, the required chlorine residual at the clearwell is 5.1 mg/L to keep the chlorine residuals above the minimum level (0.6 mg/L) over the junctions. By the optimal rechlorination at five injection sites, the chlorine residuals are distributed within a desirable range of 0.6 mg/L through 2.0 mg/L, which can avoid the excess of chlorine residuals near the clear well. Consequently, total chlirine doses are decreased by 81% in the hypothetical distribution network and 69 % in the real distribution network for satisfying the minimum chlorine residuals.

  • PDF

An alternative approach to extreme value analysis for design purposes

  • Bardsley, Earl
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.201-201
    • /
    • 2016
  • The asymptotic extreme value distributions of maxima are a natural choice when designing against future extreme events like flood peaks or wave heights, given a stationary time series. The generalized extreme value distribution (GEV) is often utilised in this context because it is seen as a convenient single expression for extreme event analysis. However, the GEV has a drawback because the location of the distribution bound relative to the data is a discontinuous function of the GEV shape parameter. That is, for annual maxima approximated by the Gumbel distribution, the data is also consistent with a GEV distribution with an upper bound (no lower bound) or a GEV distribution with a lower bound (no upper bound). A more consistent single extreme value expression for design purposes is proposed as the Weibull distribution of smallest extremes, as applied to transformed annual maxima. The Weibull distribution limit holds here for sufficiently large sample sizes, irrespective of the extreme value domain of attraction applicable to the untransformed maxima. The Gumbel, Type 2, and Type 3 extreme value distributions thus become redundant, together with the GEV, because in reality there is only a single asymptotic extreme value distribution required for design purposes - the Weibull distribution of minima as applied to transformed maxima. An illustrative synthetic example is given showing transformed maxima from the normal distribution approaching the Weibull limit much faster than the untransformed sample maxima approach the normal distribution Gumbel limit. Some New Zealand examples are given with the Weibull distribution being applied to reciprocal transformations of annual flood maxima, where the untransformed maxima follow apparently different extreme value distributions.

  • PDF

Estimation of Water Retention Characteristics Using Lognormal Distribution Model (로그분포모형을 이용한 토양수분특성 추정)

  • Sang Il Hwang
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.4
    • /
    • pp.21-26
    • /
    • 2003
  • Hwang and Powers (2003) developed a simple model for estimating water retention characteristic (WRC) directly from particle-size distribution (PSD) data, by applying a lognormal distribution law to both PSD and pore-size distribution. The objective of this work was to determine if the performance of the model developed by Hwang and Powers (2003) would be affected by soil texture. The results of this research proved that the performance of the model was indeed affected by soil texture. In particular, its performance diminished with increases in the fine particle fractions. Also, the nonlinear model, which assumes a nonlinear relation between particle-size and pore-size, performed better than the linear model, regardless of soil texture classes.

Estimating Paddy Rice Evapotranspiration of 10-Year Return Period Drought Using Frequency Analysis (빈도 분석법을 이용한 논벼의 한발 기준 10년 빈도 작물 증발산량 산정)

  • Yoo, Seung-Hwan;Choi, Jin-Yong;Jang, Min-Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.3
    • /
    • pp.11-20
    • /
    • 2007
  • Estimation of crop consumptive use is a key term of agricultural water resource systems design and operation. The 10-year return period drought has special aspects as a reference period in design process of irrigation systems in terms of agricultural water demand analysis so that crop evapotranspiration (ETc) about the return period also has to be analyzed to assist understanding of crop water requirement of paddy rice. In this study, The ETc of 10-year return period drought was computed using frequency analysis by 54 meteorological stations. To find an optimal probability distribution, 8 types of probability distribution function were tested by three the goodness of fit tests including ${\chi}^2$(Chi-Square), K-S (Kolmogorov-Smirnov) and PPCC (Probability Plot Correlation Coefficient). Optimal probability distribution function was selected the 2-parameter Log-Normal (LN2) distribution function among 8 distribution functions. Using the two selected distribution functions, the ETc of 10-year return period drought was estimated for 54 meteorological stations and compared with prior study results suggested by other researchers.

A Study on the Characteristics of Water Quality According to Particle Size Distribution of Sediments (하상퇴적물의 입도분포에 따른 수질특성에 관한 연구)

  • Park, Sung-Jin;Kim, Hwan-Gi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.1
    • /
    • pp.97-105
    • /
    • 2009
  • Analysis was done on the particle size distribution of sediments flown into Saemangeum from the Mankyung and Dongjin River. The organic pollutants and heavy metal existing in the sediments were analyzed, which was further used to study the properties of pollution in the sediments according to the particle size distribution. Conclusions shown below were made from these analyses. The particle size distribution showed a big difference between the upriver areas of Mankyung and Dongjin River. Particles under $75{\mu}m$ showed to be around 85% at Dongjin River, while it showed to be around 70% at Mankyung River. This kind of distribution in particle size concluded in greatly affecting the contamination density of the sediments. From the analysis done on the soil type of sediments, deposition in Mankyung River categorized into Silty loam and Sandy loam, where Silty loam covered most of area and deposition in Dongjin River categorized into Sand, Loamy sand, Silty loam, Sandy loam. Considering the weight ratio, the density of contamination of the sediments by particle size at Dongjin and Mankyung River has been analyzed to show that organic pollutants and heavy metals occupy more than 70% of the whole contamination in the range under the particle size of $75{\mu}m$.

Model for simulating the effects of particle size distribution on the hydration process of cement

  • Chen, Changjiu;An, Xuehui
    • Computers and Concrete
    • /
    • v.9 no.3
    • /
    • pp.179-193
    • /
    • 2012
  • The hydration of cement contributes to the performance characteristics of concrete, such as strength and durability. In order to improve the utilization efficiency of cement and its early properties, the particle size distribution (PSD) of cement varies considerably, and the effects of the particle size distribution of cement on the hydration process should be considered. In order to evaluate effects of PSD separately, experiments testing the isothermal heat generated during the hydration of cements with different particle size distributions but the same chemical composition have been carried out. The measurable hydration depth for cement hydration was proposed and deduced based on the experimental results, and a PSD hydration model was developed in this paper for simulating the effects of particle size distribution on the hydration process of cement. First, a reference hydration rate was derived from the isothermal heat generated by the hydration of ordinary Portland cement. Then, the model was extended to take into account the effect of water-to-cement ratio, hereinafter which was referred to as PSD hydration model. Finally, the PSD hydration model was applied to simulate experiments measuring the isothermal heat generated by the hydration of cement with different particle size distributions at different water-to-cement ratios. This showed that the PSD hydration model had simulated the effects of particle size distribution and water-to-cement ratio on the hydration process of cement with satisfactory accuracy.

Rechlorination for residual chlorine concentration equalization in distribution system (급배수시스템에서 잔류염소 농도 균등화를 위한 재염소 처리)

  • Kim, Jinkeun;Han, Ji-An
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.1
    • /
    • pp.91-101
    • /
    • 2014
  • Three water treatment plants(WTPs) in Jeju island whose source water have different characteristics from those of the mainland of Korea were investigated. Coefficients of bulk water decay($k_b$) of free chlorine at $5^{\circ}C$ for ES, GJ, NW WTPs were $-0.003hr^{-1}$, $-0.002hr^{-1}$ and $-0.001hr^{-1}$ respectively based on bottle tests. To simulate the free chlorine variations in the distribution system using EPANET, ES WTP was chosen. Free chlorine concentrations of several sites were less than the drinking water quality standards(i.e., 0.1 mg/L); E5(0.03 mg/L), E6(0.02 mg/L), W21(0.02 mg/L) and W25(0.03 mg/L). To maintain more than 0.1 mg/L of free chlorine in the distribution system, at least 1.9 mg/L of chlorine was needed at the WTP, which suggested rechlorination was needed to supply palatable tap water to customers. Two sites, one that diverged into E5 and E6 in the east-line and another located before E21 in the west-line were selected for the appropriate rechlorination locations. The recommended rechlorination dosages were 0.42 mg/L for the east and 0.27 mg/L for the west. The simulated results indicated that the free chlorine could be reduced to 0.4 mg/L at the WTP with rechlorination, and taps with excessive free chlorine could be more stabilized(i.e., 0.1~0.4 mg/L).