• Title/Summary/Keyword: Water Depth storage

Search Result 141, Processing Time 0.023 seconds

Comparing Organic Carbon Storage of Upper 15-cm Soils between Different Land Use Types in Korean Inland

  • Han, Kyung-Hwa;Cho, Hee-Rae;Lee, Jeong-Tae;Lee, Gye-Jun;Hong, Suk-Young;Zhang, Yong-Seon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1314-1319
    • /
    • 2011
  • This study was carried out to investigate the surface soil organic carbon fractions affecting by different land use types, including needle-leaf forest (FN), broad-leaf forest (FB), pasture, annual upland cropping land (upland), and paddy rice land (paddy). We chose seven regions across Korean inland, considering sea level altitude, and measured soil organic carbon content and physico-chemical properties such as bulk density at a depth of 0~15 cm using core samples in April for the each land use type. In addition, labile organic carbon fractions in soil including light fraction and hot water extractable carbon were investigated. From this study, organic carbon storage (Mg C per ha) in the upper 15-cm soils was highest in FB (37.8), and decreased in the order of pasture (29.1), FN (28.8), paddy (21.9), and upland crop (19.9). In forest, more than 20% of soil organic carbon existed as light fraction, the free organic matter. Hot-water extractable carbon contents of soils in five land use types were lower than 7% of their soil organic carbon content.

Factors affecting the infiltration rate and removal of suspended solids in gravel-filled stormwater management structures

  • Guerra, Heidi B.;Yuan, Qingke;Kim, Youngchul
    • Membrane and Water Treatment
    • /
    • v.10 no.1
    • /
    • pp.67-74
    • /
    • 2019
  • Apparent changes in the natural hydrologic cycle causing more frequent floods in urban areas and surface water quality impairment have led stormwater management solutions towards the use of green and sustainable practices that aims to replicate pre-urbanization hydrology. Among the widely documented applications are infiltration techniques that temporarily store rainfall runoff while promoting evapotranspiration, groundwater recharge through infiltration, and diffuse pollutant reduction. In this study, a laboratory-scale infiltration device was built to be able to observe and determine the factors affecting flow variations and corresponding solids removal through a series of experiments employing semi-synthetic stormwater runoff. Results reveal that runoff and solids reduction is greatly influenced by the infiltration capability of the underlying soil which is also affected by rainfall intensity and the available depth for water storage. For gravel-filled structures, a depth of at least 1 m and subsoil infiltration rates of not more than 200 mm/h are suggested for optimum volume reduction and pollutant removal. Moreover, it was found that the length of the structure is more critical than the depth for applications in low infiltration soils. These findings provide a contribution to existing guidelines and current understanding in design and applicability of infiltration systems.

Estimating Runoff Curve Numbers for Paddy Fields (논의 유출곡선번호 추정)

  • Im, Sang-Jun;Park, Seung-U
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.4
    • /
    • pp.379-387
    • /
    • 1997
  • This study involves field monitoring of hydrlolgic characteristics of paddy fields under common irrigation practice, statistical analysis of maximum retention storage, determination of CNs for antecedent moisture conditions. Curve numbers were estimated from observed rainfall-runoff relationship of two years data. The estimated CN for AMC-II was 78, and the CNs for AMC-I and II were 63 and 88, respectively. A water balance model was used to find the effect of ridge height changes and initial ponding depth in paddy fields on runoff. The probability distribution of initial ponding depth was also investigated. The initial ponding depth follows normal probability distribution. Initial ponding depth corresponding 10%, 50%, and 90% probability were considered to be equivalent to AMC-I, AMC-II, and AMC-III, respectively. Long-term runoff data from paddy fields were simulated by a water balance model using recorded climate data, ridge height and estimated initial ponding depth derived from probability distribution. The estimated CNs using simulated runoff were 70, 79, and 89 for CN-I, CN-II, and CN-III, respectively.

  • PDF

Relationship between Weather factors and Water Temperatures, Salinities in the West Sea of Korea (한국 서해에서 기상인자와 수온, 염분과의 관계)

  • Lee Jong Hee;Kim Dong Sun
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2003.11a
    • /
    • pp.181-185
    • /
    • 2003
  • the effect if atmosphere is more important in the West sea of Korea than in other seas because of shallow water and heat storage if the water. The serial oceanographic observation data and coastal station data from NFRID, and the atmosphere data from KMA were used in order to find out the relationship between them The highest water temperature, salinity and weather factor were recorded in Aug, and the lowest of them in Feb. As the water deepens, the maximum time leg in water temperature and the minimum time leg in salinity. Water temperature have the maximum in Oct, the minimum in Apr at 75m of the 311-07 station with 100m depth water temperature (WT)-air temperature, WT-precipitation (Preci.) and salinity (Sal)-wind speed (WS) were in direct proportion, but WT-WS, Sal-AT and Sal-Preci in inverse proportion Water temperature and salinity I-ave time leg at the same depth the maximum had more the delay of $2\~4$ months at a depth if 20 meters than at the surface in all stations except for salinity at 307-05.

  • PDF

A study on the classification of storages in urban area (도시지역 저류시설 분류체계 연구)

  • Ryu, Jaena;Oh, Jeill;Lee, Ho Ryeong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.5
    • /
    • pp.637-647
    • /
    • 2012
  • Recent series of flooding events in urban area has brought a growing concern on storage facilities as a major stormwater management method. The Korean Ministry of Environment has announced diverse plans to tackle the problem, including plans for multi-purpose storages which deal both the stormwater and wastewater. Even though storages can be categorized for different perspectives, classification of possible storages in urban area has not been throughly studied so far. This study investigated diverse references of urban storages and suggested systematic classifications on structural, functional and some other basis. Structural classification mainly concerns structural shape of facilities and includes (1)Cisterns & Rain barrels, (2)Forebays, (3)Dry basins, (4)Wet basins and (5)Constructed wetland. Those functions can be (1)flood prevention (2)water quality control and (3)reuse of stored water. Other criteria that categorize storages depend on (1)height, (2)location, (3)configuration, (4)depth, (5)site of the installation and (6)shape.

Evaporation and Desiccation of Soft Dredged Clay (초연약 준설토의 증발 및 건조특성 분석)

  • 정하익;오인규;지성현;이승원;이영남;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.217-222
    • /
    • 2000
  • An understanding of the behaviour of soft clay soils is important in a large number of civil engineering applications, including dredging operations, land reclamation and slurry management such as disposal and storage. Although the details of the behaviour depend on parameters such as the soil mineralogy, the pore water chemistry, the organic content and the microbiology, there are general features that are typical in many cases. The purpose of this paper is to present and discuss some of evaporation and desiccation observed in laboratory experiments under controlled conditions. Desiccation of dredged material is basically removal of water by evaporation which is controlled by weather and material type, etc. This study shows that (1) solar radiation, (2) wind velocity, (3) material depth, (4) trench depth are important factors in desiccation of dredged ultra soft clay.

  • PDF

A Case Study on Development of Stormwater Retention and Infiltration Pond System (우수저류 및 침투연못 시스템개발 사례연구 - 우수 저류 및 침투 효과를 중심으로 -)

  • Lee, Jae Chul;Yoon, Yeo Jin
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.6 no.4
    • /
    • pp.52-61
    • /
    • 2003
  • This study was carried out to analyze the effects of stormwater retention and infiltration pond on reduction of flood peak and volume in a experimentally developed ecological pond. The experimental site has 542$m^2$ watershed area, 1,310mm yearly-averaged rainfall. And the area of the retention pond is 60$m^2$, the maximum water depth is 0.5m, the maximum and average storage is 15$m^3$and 9.3$m^3$d. And the area of infiltration pond is 58$m^2$, and the water depth varies 0.2m~0.5m. The monitoring system consists of one rainfall gage, one Parshall flume and acoustic water level gage, two rectangular weirs and acoustic water level gage for discharge gaging, and one data recording unit. Data from ten storm events in total, three storm events in year 2000 and seven storm events in year 2001, were collected. From the data the evaporation rate was achieved with the water balance equation, and the result shows 5.0mm/day in average. The result from the analysis of the effects on reduction of flood peak and volume, is that 14% reduction of flood volume and 15% reduction of flood peak in retention pond and 49% reduction of flood volume in infiltration pond.

Effects of Forest Environmental Changes on Soil Characteristics by Forest Fire (산화에 의한 산림환경변화가 토양의 특성에 미치는 영향)

  • Nam, Yi;Min, Ell-Sik;Chang, Kwan-Soon;Park, Kwan-Soo;Lee, Yoon-Won
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.2
    • /
    • pp.61-70
    • /
    • 1998
  • This research has been made for influence of forest environmental changes, such as tree-clearcutting affecting to soil chemical and physical properties, on water storage capacity at forest fire land in Keumsan, Chungnam. The analyzed factors were bulk density, porosity, field moisture saturated hydraulic conductivity air permeability and organic matter content, Field moisture saturated hydraulic conductivity and air permeability at uncutting sites were higher than those at clearcutting sites, especially the most differences were appeared at lower slope. After 2 years passed since forest fire, the most changeable parts of soil characteristics were 5-l5cm depth below soil surface. Total Porosity, coarse pore and fine pore at uncutting sites were higher than those at clearcutting sites. Also, as soil depth increased, total porosity and coarse pore were decreased. Bulk density at uncutting sites was lower than that at clearcutting sites, and was decreased as soil depth increased. The order of the change trend in field moisture saturated hydraulic conductivity, air permeability and porosity was slope lower>middle>upper. Organic matter content at uncutting sites were higher than those at clearcutting sites, and decreased as soil depth increased. As soil depth increased, bulk density had the positive correlation, in other hand, porosity, coarse pore, field moisture saturated hydraulic conductivity, air permeability and organic matter content had the negative correlation. It was concluded that forest environmental changes by forest fire degrade soil physical and chemical properties.

  • PDF

An Experimental Study of Dynamic Type Ice Storage System Using Magneticfluid (자성유체를 이용한 다이나믹형 빙축열 시스템에 관한 실험적 연구)

  • Hwang, Seung-Sic
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1484-1493
    • /
    • 2004
  • In this study, it induced to a conclusion below by experiment consideration to regarding an effective supercooling ends method of the flow cooling water in a tube of continuous ice making method and the static cooling water in a tube of continuous ice making method which used magneticfluid in a dynamic type ice storage system. Continuous ice making in a tube of the flow cooling water was shortened about 12 minutes until supercooling ends that case which gave vertical eccentricity rotation magnetic field 120rpm than did not provide magnetic field by experimental result that was tested to supercooling ends effect from shape control of magneticfluid. Continuous ice making method in a tube of the static cooling water compared with and reviewed the case that was not provided with the magnetic field and exposed cooling surface instantaneously by magnetic field. It confirmed that supercooling degree $\Delta$ $T_{c}$, $\Delta$ $T_{s}$, and $\Delta$ $T_{w}$ became lower because of heat transfering increasing by the occurrence of natural convection between after cooling starting progress time 1∼3 minutes if it did not give a magnetic field, and peformed the supercooling ends when natural convection occurred confirmed that refrigerating capacity was better. That relation $\Delta$ $T_{c}$, and $t_{e}$/($\Delta$ $T_{c}$-$\Delta$ $T_{s}$) after convection occurred, was not depended on $T_{b}$ and initial temperature if the depth of water and thickness of magneticfluid were regular and it was possible to verify conjecture of tp from $\Delta$ $T_{s}$ and $\Delta$ $T_{c}$.lar and it was possible to verify conjecture of tp from $\Delta$ $T_{s}$ and $\Delta$ $T_{c}$.c}$.>.

Water Balance on Paddy Fields in Jedae Cheon Basin (제대천 유역 답지대의 물수지)

  • 안세영;이근후
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.3
    • /
    • pp.56-66
    • /
    • 1990
  • To investigate the status of irrigation water use and the degree of repeated use of irrigation water, observations for water balance analysis were made during the irrigation periods in 1986 and 1987 crop year. The total area of studied site is 1,441 ha. The site is a major portion of Jedaecheon basin which is located in Bubuk-myeon, Miryang-gun, Gyeongnam Province. The studied area was subdivided into six small blocks. The water balance analysis for these subdivided blocks were carried out considering characteristics of each block. Obtained results are as follow: 1.In mountainous sloppy paddy area(less than 7% slope), the surface inflow was 5A mm/day in average that is one third of the surface inflow into plain paddy area ; 16.7 mm/day. 2.The surface inflows at the vegetative stage and the ripening stage were 15.5 mm/day and 10.4 mm/day, respectively. Those figures were larger than the actual consumptive use at respective same stages ; 13.3 mm/day and 9.2 mm/day, respectively. Whereas, the surface inflow at generative stage was 12.5 mm/day which was less than 14.0 mm/day ; the actual consumptive use. 3.The range of the variation of water storage term was 1 mm/day. This means that there were no change in depth of ponded water on paddy fields. The relationship between the variation of water storage(AS) and the variation of ground water table(H) could be expressed as follow: : AS=0.14H+0.26 4.The ground water inflow: into the transition region ; paddy fields which are located continuously from the mountainous area to the plain area, was larger than the out flow from this region, in general. Rowever, in the plain region where the ground water utilization was predominant, the ground water outflow from this region was larger than inflow: to this region. The relationship between the ground water flow(G2- G1) and the consumptive use in large paddy area(D1-D2) could be expressed as follow: (G2-G1) =0.95(D1-D2) -3.79

  • PDF